Читаем История электротехники полностью

2.8. ЗАРОЖДЕНИЕ ТЕОРЕТИЧЕСКИХ ОСНОВ ЭЛЕКТРОТЕХНИКИ

Как известно, процессы в электрической цепи определяются скалярными величинами — электродвижущей силой (или напряжением) и током. Напомним, что понятие об электродвижущей силе ввел в обращение А. Вольта. После первых качественных и количественных исследований в 20-е годы XIX в. стали формироваться физические основы теории электрических токов и основы расчетов электрических цепей (А. Ампер, Г.С. Ом). Еще до Г.Р. Кирхгофа разными учеными находились токи в разветвлениях цепей (например, Э.Х. Ленцем). Но только Г.Р. Кирхгофу в 1845–1847 гг. удалось сформулировать известные топологические законы, названные его именем, которые легли в основу всех последующих методов расчета цепей.

В 1845 г. немецкий физик-теоретик Франц Эрнст Нейман (1798–1895 гг.) дал математическое выражение закона электромагнитной индукции.

Английский физик Чарльз Уитстон (1802–1875 гг.) в связи с работами по усовершенствованию телеграфа искал способы измерения сопротивлений. В результате он создал знаменитый «мостик Уитстона», достоинством которого являлась независимость состояния равновесия от напряжения источника питания. В 1840 г. он показывал свое устройство Б.С. Якоби, а в 1843 г. дал описание своего «мостика» в статье. Для изменения сопротивления одного из плечей мостика Ч. Уитстон применил регулируемые резисторы, которые он назвал реостатами. Позднее (в 1860 г.) Вернер Сименс сконструировал магазин сопротивлений.

Герман Людвиг Гельмгольц ввел в 1853 г. в теорию цепей известный ранее в физике принцип суперпозиции, на основе которого были построены важные теоремы электрических цепей, включая теорему об эквивалентном источнике (Гельмгольца — Тевенена). Гельмгольц же впервые получил уравнение переходного процесса в цепи при ее подключении к источнику, рассмотрел постоянные времени электрической цепи. Выдающийся английский ученый Уильям Том сон, впоследствии лорд Кельвин (1824–1907 гг.) в 1853 г. дал расчет колебательного процесса и установил связь между частотой собственных колебаний, индуктивностью и емкостью.

Д.К. Максвеллом был разработан метод контурных токов, доказана теорема взаимности. Постепенно формировался практически весь арсенал методов расчета (включая эквивалентные преобразования) цепей постоянного тока.

После открытия электромагнитной индукции внимание ученых в значительной степени переключилось с гальванических токов, когда главными объектами исследований были сами гальванические элементы, процессы электролиза, на индукционные токи, когда наибольший интерес стали вызывать явления электромагнетизма.

Здесь особая роль принадлежит Э.Х. Ленцу [2.9; 2.10].

В своем докладе Петербургской Академии наук 29 ноября 1833 г. Э.Х. Ленц, находясь под большим впечатлением от работ по электромагнитной индукции М. Фарадея, дал свою знаменитую формулировку закона, названного его именем: «Если металлический проводник движется поблизости от гальванического тока или магнита, то в нем возбуждается гальванический ток такого направления, что он мог бы обусловить, в случае неподвижности данного проводника, его перемещение в противоположную сторону, причем предполагается, что такое перемещение может происходить только в направлении движения или в направлении, прямо противоположном».

Очевидно, что в этой формулировке заключена и идея обратимости электрических машин, развитая позднее Б.С. Якоби.

Э.Х. Ленц был одним из основоположников теории магнитоэлектрических машин. Ему принадлежит открытие и объяснение явления реакции якоря (1847 г.) и установление необходимости сдвигать щетки с геометрической нейтрали; он впервые изучал смещение фазы тока относительно фазы напряжения (1853 г.), придумал коммутатор для изучения формы кривой индуцированного тока (1857 г.). Им было установлено условие режима максимальной полезной мощности источника энергии, когда внутреннее сопротивление источника равно сопротивлению внешней цепи. Широко известна работа Э.Х. Ленца по тепловому действию тока (1842—1843 гг.), которая была выполнена независимо от Джеймса Джоуля (1841 г.) и представляла собой настолько обстоятельное исследование, что известному закону было справедливо присвоено имя обоих ученых.

В 1867 г. Д.К. Максвелл сделал доклад Лондонскому Королевскому обществу «О теории поддержания электрических токов механическим путем без применения постоянных магнитов». Это был чисто теоретический труд, охвативший все известные к тому времени сведения об электрических машинах постоянного тока. Вероятно, затруднения в понимании максвелловского стиля изложения помешали современникам по достоинству оценить эту работу.

Серьезно продвинули теорию электрических машин введенные в 1879 г. английским электротехником Джоном Гопкинсоном (1849–1898 гг.) графические представления о зависимостях в электрических машинах, так называемые характеристики машин (характеристика холостого хода, внешняя и др.). Им же введено понятие о коэффициенте магнитного рассеяния.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Компьютерные сети. 5-е издание
Компьютерные сети. 5-е издание

Перед вами — очередное, пятое издание самой авторитетной книги по современным сетевым технологиям, написанной признанным экспертом в этой области Эндрю Таненбаумом в соавторстве с профессором Вашингтонского университета Дэвидом Уэзероллом. Первая версия этого классического труда появилась на свет в далеком 1980 году, и с тех пор каждое издание книги неизменно становилось бестселлером и использовалось в качестве базового учебника в ведущих технических вузах. В книге последовательно изложены основные концепции, определяющие современное состояние и тенденции развития компьютерных сетей. Авторы подробнейшим образом объясняют устройство и принципы работы аппаратного и программного обеспечения, рассматривают все аспекты и уровни организации сетей — от физического до уровня прикладных программ. Изложение теоретических принципов дополняется яркими, показательными примерами функционирования Интернета и компьютерных сетей различного типа. Пятое издание полностью переработано с учетом изменений, происшедших в сфере сетевых технологий за последние годы и, в частности, освещает такие аспекты, как беспроводные сети стандарта 802.12 и 802.16, сети 3G, технология RFID, инфраструктура доставки контента CDN, пиринговые сети, потоковое вещание, интернет-телефония и многое другое.

А. Гребенькова , Джеймс Уэзеролл

Технические науки