Важным новым направлением развития теории электрических цепей стала диагностика их параметров и состояния. Задачи, связанные с диагностикой, приобрели определяющее значение при управлении процессами в электрических цепях и системах. Особенно острыми они стали при организации диспетчерской службы ЕЭС страны для принятия оперативных решений по управлению эффективным распределением потоков электромагнитной энергии в ней.
Для решения этой задачи требуется знание текущего состояния системы т.е. ее структуры и параметров элементов системы, для чего и необходимо провести диагностику системы: определить путем измерений и расчетов параметры, необходимые для управления состоянием системы (или электрической цепи), и организовать проверку достоверности результатов диагностики. В решение этой проблемы заметный вклад внесли Н.В. Киншт, П.А. Бутырин, А.З. Гамм и др.
В теории линейных цепей особое положение занимают цепи с переменными во времени параметрами. Математический аппарат, пригодный для представления решения уравнений процессов в аналитической форме, существенно менее развит, чем таковой для линейных цепей, и в этом основная причина сложности создания пригодной для практики теории расчета процессов в таких цепях. Общие решения и анализ их свойств содержится во многих работах (в частности, Л. Заде и Ч. Дезоер «Теория линейных систем», К.С. Демирчян и П.А. Бутырин «Моделирование и машинный расчет электрических цепей», В.А. Тафт «Электрические цепи с переменными параметрами»). Исследованию специфических свойств таких цепей, в частности случаю периодичности изменения параметров цепей, посвящены многие работы. В таких цепях при помощи нахождения соответствующих преобразований иногда оказывается возможным свести их к цепям с постоянными параметрами. Этот случай характерен для описания процессов в электрических машинах (А.А. Горев).
4.6. ТЕОРИЯ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЛЦ
Важным разделом в ЛЦ являются методы анализа переходных процессов. На заре зарождения теории электрических цепей стало очевидным, что переход от одного установившегося режима к другому происходит не сразу. Наличие в электрических цепях конденсаторов и индуктивных элементов, заряды и потокосцепления которых не могут изменяться скачкообразно, приводит к тому, что становление нового режима происходит по мере изменения энергии ЭМП в этих элементах. В классической постановке задачи анализ переходных процессов в цепях сводится к нахождению полного решения системы интегродифферециальных уравнений и с этой точки зрения является традиционной. По мере развития теории дифференциальных уравнений этот подход обогащался различными методами нахождения частных решений исходной системы уравнений. Важным следует считать предложенное в 1853 г. Дюамелем выражение для исследования динамики линейных систем, позволяющее применительно к линейным электрическим цепям, для которых применим принцип наложения, по известной переходной или импульсной характеристике электрической цепи отыскать ее реакцию на воздействие произвольной формы, названное в его честь интегралом Дюамеля, или интегралом свертки. Интеграл Дюамеля по праву считается одной из основных формул в теории цепей. Обобщение интеграла Дюамеля для систем уравнений Коши в случае переменных во времени параметров электрической цепи мало пригодно для нахождения аналитических решений. С самого начала применения классического общего подхода для решения задач теории цепей выявились и ограничения, связанные с отысканием корней полиномов для нахождения решения однородного дифференциального уравнения, частного решения неоднородного уравнения, и проблема определения неизвестных постоянных интегрирования. По этим причинам, а также и для упрощения получения исходной системы уравнений О. Хевисайдом в 1892 г. был предложен метод операторов и интегрального преобразования, позволяющий алгебраизировать и находить решение системы дифференциальных уравнений. Впоследствии Д. Карсоном, Б. Ван-дер-Полем, Т. Бромвичем и др. было показано, что преобразование, лежащее в основе этого метода, является одной из множества модификаций преобразования П.Лапласа (1749–1827 гг.), предложенного им в 1779 г. Однако именно О. Хевисайду принадлежит заслуга внедрения этого метода решения системы дифференциальных уравнений в электротехнику. Этот метод с середины 20-х годов нашел широкое распространение в теории переходных процессов. В теории линейных цепей особое место занимает проблема нахождения частного решения исходной неоднородной системы дифференциальных уравнений, описывающего установившийся процесс.
Работы К.С. Демирчяна, П.А. Бутырина позволили установить, что преобразование Лапласа со сдвигом во времени, представляющее собой установившуюся реакцию системы с импульсной переходной функцией вида