Читаем История естествознания в эпоху эллинизма и Римской империи полностью

Из этой таблицы видно, что в отношении размеров Луны и расстояния от Земли до Луны значения, полученные Гиппархом, оказались поразительно точными. Гораздо хуже дело обстояло с Солнцем: здесь Гиппарх ошибался по крайней мере на порядок величины. Это объясняется тем, что измерение параллакса Солнца было задачей, превышавшей возможности античной наблюдательной техники, что, кстати сказать, сознавал и сам Гиппарх; по этой причине значения, полученные Гиппархом в отношении Солнца, были не более как весьма приблизительными прикидками. Любопытно, что в этом вопросе Птолемей допускал еще более грубые ошибки. Более или менее точное определение параллакса Солнца оказалось возможным лишь после изобретения телескопа.

Курьезная попытка определения абсолютных размеров Солнца была предпринята Посидонием. У Эратосфена где-то содержалось утверждение, что, когда Солнце находится в созвездии Рака, в Сиене (лежащей как раз на тропике Рака) предметы не отбрасывают тени в пределах площади, диаметр которой равен 300 стадиям. Это означает, что на всей этой площади солнечные лучи падают вертикально на поверхность Земли. Отсюда Посидоний заключил, что если построить конус, вершина которого совпадает с центром Земли, а его основанием является находящийся в зените диск Солнца, то тогда боковая поверхность конуса пройдет через границу указанной безтеневой области. Далее Посидоний предположил, что орбита Солнца в 10 тыс. раз превышает окружность земного шара, откуда непосредственно следовало, что диаметр Солнца должен иметь величину 10 тыс. х 300 стадиев, или, по порядку величины, около 500 тыс. км. Как это ни странно, эта цифра оказалась гораздо ближе к истинному значению диаметра Солнца (немного менее 1,4 млн км), чем результаты, полученные Гиппархом на основе предположений о параллаксе Солнца. С помощью этого же построения Посидоний сделал дальнейшие заключения о размерах земного шара. Так, радиус земного шара у него получился равным 50 тыс. стадиев (что намного превышает истинное значение), а его окружность — 300 тыс. стадиев, т. е. ровно в тысячу раз больше диаметра той области, на которой предметы не отбрасывают тени.

Из этих данных можно заключить, что Посидоний не утруждал себя точными вычислениями, а оперировал в основном круглыми цифрами (этим, вероятно, следует объяснить и совершенно произвольную цифру 10 тыс., положенную в основу его расчетов). Все это было настолько далеко от научной астрономии, что Птолемей даже не упоминает имени Посидония в связи со всей этой проблематикой. Бросается в глаза также значительное расхождение между приведенными цифрами относительно размеров земного шара и данными, полученными тем же Посидонием в результате наблюдений над звездой Канопус, о чем мы говорили выше. Популярность Посидония была, однако, настолько велика, что находившиеся под его влиянием авторы (например, Клеомед) приводили и те и другие результаты, даже не пытаясь их как-нибудь согласовать.

Как уже было отмечено на предыдущих страницах, после Гиппарха, а точнее, начиная с Посидония, наступает период, когда у нас отсутствуют сведения о серьезных астрономических исследованиях, но когда пишется целый ряд популярных астрономических сочинений, имевших, по-видимому, достаточно широкий круг читателей. На некоторых авторах этих сочинений не мешает вкратце остановиться.

Прежде всего, это Клеомед, несколько раз уже упоминавшийся на предыдущих страницах. О нем самом мы ровно ничего не знаем. Зато мы располагаем текстом его трактата по астрономии, озаглавленного достаточно серьезно: «Теория круговых движений небесных тел» (Κυκλική ϑεωρία μετεώρων). На самом же деле, это популярное сочинение, написанное, скорее всего, в I в. н. э. и носящее на себе явную печать воззрений Посидония, на которого, впрочем, сам автор неоднократно ссылается.

Трактат Клеомеда открывается несколькими аксиомами общекосмологического характера. Перечислим основные из этих аксиом:

1. «Вселенная ограничена и за пределами окружающей ее поверхности простирается безграничная пустота». Обосновывая эту аксиому, Клеомед полемизирует с перипатетической физикой; основные аргументы его полемики заимствованы у стоиков, и прежде всего, конечно, у Посидония.

2. «Земля, имеющая шарообразную форму, со всех сторон окружена Небом». Доказательство шарообразности Земли проводится Клеомедом по методу исключения: он показывает, что Земля не может быть ни плоской, ни выгнутой, ни кубической, ни пирамидальной; следовательно, она должна иметь форму шара! Наиболее убедительных аргументов в пользу этой аксиомы, таких, например, которые содержатся в аристотелевском трактате «О небе», Клеомед не приводит, ограничиваясь лишь несколькими тривиальными соображениями.

От сферичности Земли Клеомед переходит к тезису о сферичности мира в целом, заключая свои рассуждения утверждением, что сфера — наиболее совершенная из всех геометрических фигур.

3. «Земля находится в центре Вселенной».

4. «По сравнению с размерами Вселенной Земля представляется не более как точкой»[244].

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже