Итак, ставится следующий вопрос: почему более длинные весы (т. е. весы с более длинными плечами) оказываются точнее более коротких? Этот вопрос связывается одним из замечательных свойств круга, выражающимся в том, что более длинный радиус вращающегося круга описывает за одно и то же время большую дугу, чем более короткий радиус (иначе говоря, что более длинный радиус проходит одно и то же расстояние за меньшее время, чем более короткий). При обсуждении этого свойства автор вдается в довольно путаные рассуждения, сопровождаемые геометрическими построениями, разбором которых мы заниматься не будем. В этих рассуждениях, однако, обращают на себя внимание два пункта, представляющие интерес с точки зрения истории механики.
Именно здесь мы впервые находим формулировку правила параллелограмма для сложения двух взаимно перпендикулярных перемещений (и эквивалентного ему правила разложения движения на две взаимно перпендикулярные составляющие). Это правило применяется к рассмотрению движения точки по окружности, которое разлагается на две составляющих — тангенциальную и радиальную. При этом тангенциальная составляющая (движение вдоль касательной к окружности) рассматривается в качестве естественной компоненты движения, а составляющая, направленная к центру круга, трактуется как насильственное движение. Такая трактовка не совпадает с традиционным аристотелевским пониманием естественного и насильственного движений и служит одним из аргументов против приписывания авторства «Механических проблем» Аристотелю; с другой стороны, она в какой-то мере предвосхищает позднейшие представления об инерциальном движении вдоль касательной к окружности и радиальном ускорении под действием центростремительной силы.
По мнению автора трактата, уподобление плеча весов радиусу вращающегося круга позволяет понять, почему при одном и том же грузе смещение длинного плеча оказывается более значительным и, следовательно, более заметным, чем смещение малого плеча.
В ходе дальнейших рассуждений автор объясняет действие рычага, трактуя его как особого рода неравно-плечные весы, которые не подвешены на шнуре, а поворачиваются вокруг твердой точки опоры. Под действием одного и того же веса более длинное плечо передвигается быстрее, чем короткое, причем его скорость (как это и следует из свойств круга) будет пропорциональна длине плеча. Отсюда делается вывод, что отношение веса, приводимого в движение (на коротком конце рычага), к весу, приводящему в движение (на длинном конце), находится в обратной пропорции к отношению длин соответствующих плеч. Чем дальше человек, приводящий в движение рычаг, находится от точки опоры, тем больший вес ему удастся поднять. Этот вывод бесспорно верен: он является обобщением многовековой человеческой практики и лишь искусственно притянут автором к чудесным свойствам круга. Мы видим, что теоретическая часть «Механических проблем» еще не поднялась до уровня научной механики и представляет собой смесь правильных наблюдений и метафизических спекуляций.
Затем следует рассмотрение свыше 30 конкретных проблем, в большей своей части относящихся к действию различного рода механических устройств и инструментов. В каждом случае задается вопрос: почему происходит то-то и то-то? Причем ответ на этот вопрос в большинстве случаев сводится к объяснению действия данного устройства с помощью принципа рычага. В ряде случаев такое объяснение оказывается вполне оправданным: это имеет место, например, когда речь идет о работе рулевого или гребного весла, разного рода щипцов (как зубоврачебных, так и употребляемых для раскалывания орехов), колодезного журавля. Впрочем, и здесь некоторые соображения автора не могут вызвать у нас ничего кроме улыбки; чего стоит, например, следующее детское рассуждение, долженствующее пояснить, почему рулевое весло прикрепляется к кормовой части судна:
«Оно помещается на конце, а не в середине, потому что движимое легче двинуть, если его двигают с конца. Ибо передняя часть перемещается быстрее всего, потому что в перемещаемых [предметах] перемещение прекращается у предела (έπι τέλει); таким образом и у непрерывных тел перемещение оказывается наиболее слабым вблизи предела (έπί τέλους). Если же оно самое слабое, его легко отклонить в сторону»[280]
.Пусть кто хочет ищет в этом рассуждении какой-либо смысл. И таких мест в «Механических проблемах» немало, особенно в тех случаях, когда автор пытается объяснить на основе принципа рычага явления совсем другого рода. Это относится, например, к объяснению действия клина, который трактуется как совмещение двух рычагов. Неверно излагается также механизм действия блока и комбинации блоков. Вообще автор «Механических проблем» неизменно терпит неудачу, когда он пытается решить задачи, выходящие за пределы чисто статических закономерностей. И это, конечно, не случайно. Впрочем, он сам чувствует свою беспомощность в объяснении динамических процессов, что, в частности, видно из следующих двух отрывков.