Читаем История естествознания в эпоху эллинизма и Римской империи полностью

Следует отметить, что в «Альмагесте» Птолемей широко пользуется заимствованной у вавилонян шестидесятиричной системой нумерации, применяя ее не только для дуг круга, но также для отрезков и площадей. Таким образом, «минуты», «секунды» и т. д. становятся у него отвлеченными числами, не связанными с каким-либо определенным видом величины. Любопытно, что в его записи дробей существовал символ о («омикрон»), служивший для обозначения отсутствия одного из шестидесятиричных разрядов. Это — первое появление нуля в европейской математической литературе.

Работы Менелая, Герона, Птолемея показывают, что в Ι—II вв. н. э. в Александрии происходит возрождение математических наук. При этом обращает на себя внимание следующее обстоятельство: если в IV–III вв. центральным направлением, разрабатывавшимся александрийскими математиками, была геометрическая алгебра, то после Аполлония из Перги (II в.) это направление заходит в тупик и теперь заметный прогресс наблюдается в прикладной математике (приближенные вычисления) и в разделах, связанных с астрономией (сферическая тригонометрия), картографией и оптикой. То, что этот прогресс не получил дальнейшего развития в античную эпоху, зависело не от внутренних закономерностей развития науки, а от внешних условий, оказавших крайне неблагоприятное воздействие на научную деятельность того времени, и в частности на судьбу александрийской научной школы.

Эти неблагоприятные условия дали себя знать уже начиная с конца II в. н. э. Для Римской империи III век н. э. был веком политического развала и социального разложения. После смерти императора Коммода (в 192 г.) начинается ожесточенная борьба за императорский трон между сенатом и различными армейскими группировками. В период со 192 по 284 год на римском престоле сменилось 22 императора, большинство которых погибло насильственной смертью. В подавляющем числе случаев эти монархи были грубыми, необразованными временщиками, которым не было никакого дела до науки и культуры и основная забота которых состояла в том, чтобы как можно дольше продержаться на троне и хотя бы на время отразить врагов, наседавших на империю со всех сторон. На севере, в Галлии, это были франки и алеманны, на северо-востоке, на Дунае — готы, сарматы и маркоманны, в Азии — новая персидская держава Сассанидов. В различных частях империи вспыхивают восстания крестьян, колонов и рабов, усиливаются центробежные тенденции, приводящие к возникновению новых государственных образований, которые раздуваются, а затем лопаются как мыльные пузыри. Одним из таких государств стала Пальмира, центром которой был одноименный город — оазис, расположенный на перекрестке торговых путей в восточной части Сирийской пустыни. В 60-е годы III в. н. э. Пальмира объединила под своей властью всю

Сирию, значительную часть малой Азии, Аравию и Египет вместе с Александрией. После разгрома Пальмиры войсками императора Аврелиана (270–275 гг. н. э.) в Александрии вспыхивает антиримское восстание, руководимое неким Фирмусом. Отсутствие материалов не позволяет нам делать какие-либо заключения о социальной природе и целях этого восстания, но его последствия оказались гибельными для александрийской науки. Римляне окружили восставших в Брухейоне — центральном районе Александрии, в котором был расположен бывший дворцовый комплекс, включавший Мусейон. В результате осады Брухейон был разрушен и сожжен, а вместе с ним погибли остатки царской Библиотеки. Это произошло в 272 г. н. э. Правда, за пределами Брухейона еще оставалась «малая» библиотека, расположенная на территории храма Сераписа. И хотя деятельность Мусейона, по-видимому, окончательно прекратилась, в Александрии еще продолжали жить и работать ученые. Любопытно, что это были в основном математики. И вот о деятельности этих последних могикан александрийской математической школы нам остается рассказать в этой главе.

Прежде всего это был Диофант, величайший математик III столетия. В его лице мы встречаемся с представителем нового, алгебраического направления в античной математике, которое не находилось ни в какой связи с традиционной греческой геометрией. В свете новейших открытий в области ориенталистики можно считать вероятным, что корни алгебры Диофанта (так же, как и приближенных формул Герона) восходят к вавилонской математике. К сожалению, мы не располагаем никакими промежуточными звеньями, которые позволили бы проследить процесс переноса вавилонских алгебраических методов на эллинистическую почву.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже