Оптика немного моложе, чем механика. Знание прямолинейного распространения света и понятие «луча» - древнего происхождения. Отражение и преломление также были предметом размышления уже в древности; уже тогда знали отражение вогнутым зеркалом и линзами. Роджер Бэкон (1214-1294) описал положение фокуса и обратил внимание на неточность соединения лучей света в изображении точечного источника света. Очки, повидимому, были изобретены флорентинцем Сальвино Армати в 1299 г. Закон, определяющий направление отраженного луча, принадлежит к еще более древним знаниям неизвестного происхождения. Указывают на двух авторов закона преломления: Вилиброрд Снел, иначе Снеллиус (1591-1626), который, по свидетельству Гюйгенса, открыл этот закон на основе измерений, и Рене Декарт (1596-1650), который вывел этот закон из своего корпускулярного воззрения. Кеплер не вполне справился с этим; его формула имеет значение только как приближение для малого угла падения, однако она была достаточной для установления вполне применимой теории телескопа. С установлением законов отражения и преломления были полностью заложены физические основы геометрической оптики, дальнейшее развитие которой большей частью было делом рук математиков и практиков приборостроения. Такие люди, как Гамильтон и Гаусс (1777-1855), принимали участие в ее развитии, но, несмотря на все старания и остроумие, она до сих пор не получила завершенного вида. Границы ее применимости ставятся волновой природой света; в микроскопе эти границы выражаются в том, что он не дает четких изображений двух точек, расположенных на расстоянии меньшем, чем 10-5
Большую трудность представляло для старой оптики объяснение цветов. Вторым великим деянием Исаака Ньютона было данное им в 1672 г. доказательство того, что белый свет состоит из света различных цветов и, следовательно, цветной свет имеет более простую природу, чем белый. Ничто так ярко не иллюстрирует значение этого открытия, как страстный протест против него со стороны Гете (1791-1792 и 1810). Гете ссылался на тот факт, что глаз воспринимает белый цвет как единство, в отличие от уха, которое гармонически анализирует колебания. Ньютон был вынужден заняться призмой в связи с хроматической аберрацией оптических инструментов, которую он считал неизбежной. С этим связана его конструкция зеркального телескопа (1672), в котором эта аберрация была полностью устранена. Этой точки зрения придерживались также его последователи до тех пор, пока в 1753 г. Джон Доллонд (1706-1761) не сконструировал ахроматический объектив телескопа с помощью стекол различных сортов. В 1800 г. Фридрих Вильгельм Гершель (1738-1822) указал, что границы спектра не совпадают с границами видимого света и что за красным цветом находится излучение менее преломляемое, но обнаруживаемое благодаря тепловому действию. Спустя год за фиолетовой частью спектра Иоганн Вильгельм Риттер (1776-1810), а также Вильям Гайд Волластон (1766-1828) обнаружили химически действующее излучение.
Проблема измерения континуума различных видов световых лучей, разделяемых призмой сообразно их природе, представляет собой проблему, аналогичную измерению времени (гл. 1). Слова «красный», «желтый» и т. д. внутри этого континуума являются слишком неточными и субъективными вехами, изменчивыми в зависимости от того или другого воспринимающего лица. Поэтому значительным шагом вперед было открытие в 1814-1815 гг. Иозефом Фраунгофером названных по его имени темных линий в солнечном спектре (он присоединил к призме спереди коллиматор, а сзади телескоп). Фраунгофер использовал эти линии как метки и смог точно измерить показатель преломления, приписав каждой линии соответствующее значение. В настоящее время так же поступают для различных технических целей. Но поставленная проблема была решена лишь в 1821-1822 гг., когда Фраунгофер получил диффракцию на решетке и Магнус Шверд (1792-1871) объяснил это явление на основе волновой теории (1835 г.). С этого времени стали измерять длину волны любого вида света по известным углу диффракции и постоянной решетки с относительной точностью до 10-7. Именно с этого времени существует спектроскопия с ее огромным значением для науки и техники. Так, например, измерения Пашеном (1865-1947) длин волн для линий водорода и гелия и особенно опирающееся на эти измерения точное определение константы Ридберга имели решающее значение для атомной модели Бора (гл. 14).