ряды и поле настолько связаны друг с другом, что одно не может существовать без другого. Поэтому наука может с одинаковым успехом как принимать заряды за основу для познания поля, так и заключать о зарядах из изменений электрических силовых линий. Это - логические заключения; они не имеют дела с реальным отношением причины и следствия. То же, конечно, относится к взаимоотношениям между полем тяготения и его массами.
Своеобразны отношения между учением об электричестве и механикой. Как уже говорилось, Максвелл пытался в 1862 г. дать механическую картину магнитного поля. Позднее, в период прогрессирующего признания его теории, многие пытались более рациональным путем представить механику эфира как основу для такой картины. И до известной степени можно подчинить теорию линейных замкнутых (квазистационарных) токов теории циклов, разработанной Гельм-гольцем на основе механики. Но это не больше, чем математическая аналогия между различными видами физических процессов. Во всяком случае она характерна для проникновения электродинамических воззрений в широкие круги; последнее иллюстрируется тем, что современный инженер чаще объясняет действие механических машин через соответствующую электрическую схему. Но постепенно к 1900 г. поняли, что общее сведение электродинамики к механике невозможно.
С 1880 г. постепенно выступала противоположная мысль: свести механику к электродинамике. То, что движущийся носитель заряда несет с собой свое электрическое поле и что он имеет количество движения, связано с идеей электромагнитного происхождения инертной массы. Некоторые пытались любую массу рассматривать как электромагнитную массу. В 1902 г. эта воззрение нашло свое математическое отражение
в теории Макса Абрагама (1875-1922) относительно импульса движущегося электрона, представляемого в виде заряженного шара; масса получалась зависящей от скорости, и формула Абрагама долгое время конкурировала с релятивистской формулой (гл. 2).
Но и от этой идеи физика отошла. Опыты дали, наконец, однозначное решение в пользу релятивистской формулы; к тому же теория Абрагама получала для пропорциональности между энергией и покоящейся массой другой коэффициент, чем выступающий в эйнштейновском законе инертности энергии, нашедшем полное подтверждение в ядерной физике (гл. 11). Однако в качестве подготовки релятивистской динамики работы Абрагама имели большое значение.
Если релятивистская динамика также совершенно независима от какого-либо представления о природе сил и, таким образом, также независима от электродинамики, то последняя все же играет решающую роль при открытии этой динамики. Из опытов, которые были сконцентрированы в динамике Ньютона, нельзя было придти к теории относительности Эйнштейна; они были недостаточно точны. Поскольку электродинамика привела к связанному с преобразованиями Лорентца принципу относительности, она обусловила также переход от ньютоновской динамики к релятивистской. В этом чисто историческом смысле современная динамика основывается также на электродинамике.
Новейшие исследования по магнетизму выходят за пределы чистой электродинамики. Согласно теории Максвелла намагничение пропорционально магнитному полю в соответствии с опытами, относящимися к диамагнитным и слабо парамагнитным телам. В железе, никеле, кобальте и некоторых сплавах, в которых впервые был открыт магнетизм, при растущей силе поля намагничение достигает значения насыщения, которое, конечно, лежит далеко за пределами намагничения у-