Действительно, второй основной закон дает для них не уравнение, а только неравенство. Современная физика при вычислении энтропии применяет различные специально выработанные методы статистики, которые будут обсуждены в гл. 10. Только теперь обнаружилось истинное значение понятия энтропии. Этим понятием постоянно особенно много занимался М. Планк с самого начала своего научного пути. В классической
термодинамике всегда можно было, при желании, избежать этого понятия, а именно, можно было для каждого отдельного случая изобрести собственный круговой процесс и таким образом повторить для единичного случая общее рассуждение, ведущее к этому понятию, которое необходимо для статистических методов термодинамики.
В процессе открытия Планком закона излучения понятие энтропии играло важную, можно вполне сказать - решающую, роль.
ГЛАВА 10
АТОМИСТИКА
Понятие и термин «атом» возникли в древности. Вопрос о том, какую роль играло это понятие в мышлении Демокрита (460-371 до н. э.) и его последователей, является скорее философским, чем естественнонаучным вопросом. Во всяком случае они не связывали это понятие с наблюдениями. Нельзя также, несмотря на знаменитые имена, дать благоприятную оценку литературе, посвященной атомистике, выходившей в течение нескольких столетий. Исключением является вскоре забытая статья *) Даниила Бернулли (1700-1782) о кинетической теории газов (1738). То, что появилось в этом роде в первой половине XIX столетия, до известной степени оправдывает, по мнению Гельмгольца, нерасположение ко всем теориям, которое проявлял, подобно многим своим современникам, например, заслуженный экспериментатор Г. Магнус (1802-1870).
Современное понятие атома и молекулы создала химия; как - это относится к истории химии. Мы фиксируем здесь три ее достижения, которые физика около 1850 г. могла просто перенять. В работах главным образом Джона Дальтона (1766-1844) было установлено, что атомы одного и того же химического элемента имеют совершенно идентичные свойства, а также дано определение атомного веса элемента как отношения массы одного атома этого элемента к массе
') В его великом произведении «Гидродинамика».
одного атома водорода. Амедео Авогадро (1776-1856) в 1811 г. дал правило, названное его именем, согласно которому идеальные газы при одинаковых температуре и давлении содержат в единице объема одинаковое количество молекул.
Если отвлечься от излагаемой в главе 12 идеи Л. А. Зеебера о структурах кристаллов (1824 г.), то первой формой физической атомистики является кинетическая теория газов. Около 1850 г. уже была признана эквивалентность теплоты и энергии; в связи с этим и стали рассматривать теплоту как молекулярное движение. С другой стороны, опыты Жозефа Луи Гей-Люссака (1778-1850) в 1807 г., а также аналогичные измерения Дж. Джоуля в 1845 г. подтвердили независимость внутренней энергии идеальных газов от их объемов, что доказывало, кроме того, ничтожность сил, действующих между их молекулами. В 1856 г. Август Карл Кредитив 1857 г. Рудольф Клаузиус (1822-1888) были вынуждены приписать молекулам газов прямолинейные движения до момента, когда они сталкиваются между собой или со стенкой сосуда. Закон сохранения импульса требовал, чтобы давление газа было пропорционально средней кинетической энергии молекул с некоторым универсальным коэффициентом пропорциональности. С другой стороны, из закона Бойля-Мариотта - Гей-Люссака вытекало, что эта энергия пропорциональна абсолютной температуре, - фундаментальное положение, которое не ограничивается газами и, согласно современной квантовой теории, имеет большие исключения только при очень низких температурах. Одновременно было дано верное вычисление скорости движения молекул. Для молекул водорода при температуре в 300° К она получилась равной 1,9 • 105
сколько со средними длинами свободного пробега между двумя столкновениями. Затем в 1860 г. Джемс Клерк Максвелл (1831-1879) на основе собственных измерений внутреннего трения дал числовые значения этих средних путей, объяснившие медленность диффузии газов. В той же самой работе он избавился от произвольной гипотезы о том, что все молекулы обладают одинаковой скоростью, и сформулировал названный по его имени закон распределения скоростей. Доказательство этого закона было усовершенствовано впоследствии им самим и главным образом Людвигом Больц-маном (1844-1906) в 1868 г. Сначала закон был недоступен экспериментальному исследованию, и лишь в 1932 г. О. Штерн преодолел все возникшие здесь трудности. Вскоре этот закон стал исходным пунктом для многих обобщений, следствия которых, как мы это увидим дальше, подтверждались измерениями. Основная заслуга, разумеется, принадлежит Максвеллу.