Читаем История греческой философии в её связи с наукой полностью

Таковы "атомы" Платона, природу которых нам теперь надо по возможности определить. Что представляют собой эти элементарные треугольники и составленные из них многогранники? Геометрические фигуры? Физические тела? Некоторыми из своих характеристик "первых тел" Платон дал основания считать их физическими телами. Говоря о том, что огонь "рассекает лезвиями своих граней" и "остриями углов", он явно уподобляет пирамиду огня физическому телу; называя тетраэдр огня наиболее легким из всех остальных многогранников, Платон тем самым вводит определение тяжести, которое опять-таки присуще именно физическому, а не геометрическому телу. Более того, указывая на "малость" этих "исходных" тел, Платон опять вызывает ассоциацию между ними и физическими атомами. И все же, несмотря на все эти характеристики, нам представляется, что Платон не мыслил свои "треугольники" и "многогранники" как физические тела, а все приведенные их определения надо отнести за счет того - "не истинного, а лишь правдоподобного" - способа рассуждения, о котором было сказано с самого начала. Реальностью, в которой воплощаются все эти фигуры, является материя, понятая не как вещество, а как пространство: двухмерное - для треугольников (плоскость), трехмерное - для многогранников (объем). В этом смысле, нам кажется, ближе к истине то истолкование этих платоновских "тел", которое предлагает В. Гейзенберг.

Вопрос о том, как понимает Платон "материю", является одним из самых трудных; вокруг него всегда велось много споров, которые не прекращаются и сегодня. Но, учитывая особенности платоновской математической программы, можно полагать, что, по крайней мере, в сочинениях позднего Платона материя и в самом деле понимается как пространство. Об этом недвусмысленно говорит и Аристотель в "Физике": "...с этой точки зрения место будет формой каждого тела, а поскольку место кажется протяжением величины - материей, ибо протяжение есть иное, чем величина, оно охватывается и определяется формой, как бы поверхностью и границей. А таковы именно материя и неопределенное... Поэтому Платон в "Тимее" и говорит, что материя и пространство - одно и то же, так как одно и то же восприемлющее и пространство". А как понимает Платон пространство и в каком смысле пространство является условием возможности геометрических объектов ("началом геометров"), об этом мы уже говорили выше.

То, что Платон отождествляет материю ("мать-восприемницу") с пространством, признают многие исследователи. Так, В. Шадевальдт пишет по этому поводу: "На месте материи у Платона в качестве "матери и кормилицы" всего сущего стоит чисто воспринимающее... Это чисто воспринимающее есть, согласно Платону, чистое, невидимое, лишенное образа пространство..." Эту точку зрения разделяет и Э. Франк: "Субстанцией (материей) тела, остающейся неизменной и тождественной при всей смене чувственных определений, является здесь у Платона пустой пространственный образ (пространственное очертание) тела, атома независимо от того, имеет ли этот последний форму куба, тетраэдра или другого правильного многогранника..."

Таким образом, и платоновские "атомы", будем ли мы рассматривать в качестве таковых треугольники или правильные многогранники, следует мыслить как геометрические пространственные образования. Этим они отличаются от атомов Демокрита как мельчайших физических тел. Поэтому представляется справедливым высказанное В.П. Зубовым соображение о том, что "Платон вовсе не мыслил образование "стихий" из элементарных треугольников как некий реальный, физический процесс" - и это несмотря на то, что сам способ, каким обсуждается в "Тимее" процесс сотворения космоса, дает, как мы выше видели, повод для такого физического толкования платоновских "тел".

Завершая рассмотрение платоновской "физики", отметим важнейшие ее особенности, связанные со спецификой платоновского понимания науки в целом.

1. Платон не считает научно достоверным такой род знаний о природе, какой назывался "физикой" в его время и был представлен в теориях натурфилософов - Фалеса, Анаксимена, Эмпедокла, Анаксагора, Демокрита и др. Поскольку же речь все-таки заходит о структуре космоса и о физических явлениях и поскольку Платон сам о них говорит, он считает свои построения не более как "правдоподобным мифом".

2. Платон в "Тимее" делает попытку выявить в природном мире все то, что может быть предметом изучения математики и тем самым впервые в истории строит в сущности вариант математической физики. Он считает, что в мире природы достоверное знание мы можем получить ровно в той мере, в какой раскроем математические структуры этого природного мира. Именно этим обстоятельством, на наш взгляд, объясняется интерес к "Тимею" ученых эпохи эллинизма, средних веков и эпохи Возрождения - вплоть до Галилея.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже