Читаем История и антиистория. Критика «новой хронологии» академика А.Т. Фоменко полностью

В статье [4] (в настолько общем виде, что ничего понять невозможно) и [1] А. Т. Фоменко предложил новый метод анализа династий. Однако и этот метод не лучше старого. Разбором этого метода мы и займемся. Предлагается рассматривать династии из n правителей как векторы в n-мерном пространстве. При этом координаты векторов соответствуют отдельным длительностям правления. Такая модель сомнительна — она предполагает независимость длительностей правления. Но ведь это не так! Например, проведенный мной статистический анализ длительностей правлений, приведенных в справочнике [8] показал, что после короткого, правления меньшего 3-х лет вероятность такого же короткого правления почти в 3 раза больше чем после длинного (больше 20 лет). Этот факт объясняется достаточно просто — в периоды смут правители часто сменяются, тогда как долго правящий правитель обычно успевает подготовить себе хорошую смену. Уже одного этого факта достаточно, чтобы поставить по сомнение корректность любых дальнейших «вероятностных интерпретаций» нового метода А. Т. Фоменко. Построенные частотные гистограммы в этих двух случаях заметно различаются. Кроме того, надо учитывать и постепенный рост средней длительности правления со временем (связанный в частности и с ростом продолжительности жизни) — этот факт также легко обнаруживается при анализе данных. Приходится констатировать, что статистический анализ длительностей правлений, приводимый А. Т. Фоменко в [4, c.114] сделан весьма поверхностно, а ведь это основа.

Проиллюстрируем сущность метода А. Т. Фоменко на примере пространства двух измерений, также как это делает автор в [2, т.1, с. 414–429], но пойдем для ясности в методе аналогий несколько дальше. Пусть у нас есть не список династий, а список городов с географическими координатами, измеренными с некоторой погрешностью. Мы почему-то решили, что в списке имеются «дубликаты» и нам их хочется обнаружить. Самое простое и естественное решение — рассчитать все расстояния между парами городов и посмотреть внимательно на пары, для которых это расстояние меньше вероятной погрешности измерения. Подобная процедура поиска близких династий в эвклидовой метрике, примененная мной к списку династий [8] не выявляет никаких особенностей, выходящих за рамки статистических распределений. Впрочем, о том же пишет и А. Т. Фоменко [2, т.1, c.420]. Что же предлагается делать в соответствии с «методикой распознавания дубликатов» А. Т. Фоменко? Выберем пару городов из списка. Построим на карте прямоугольник, центр которого совпадает с первым городом, а один из углов со вторым. Теперь учтем то, что координаты измерены с погрешностью и расширим прямоугольник исходя из возможной погрешности. Естественно, наши города распределены на карте неравномерно, скажем, чем больше широта и долгота (чем севернее и восточнее) тем их плотность на карте меньше. А. Т. Фоменко почему-то предлагается считать, что чем реже встречаются города (династии) тем больше их погрешности, и тем, соответственно, больше надо расширять прямоугольник (для обоснования этого факта всегда дается ссылка [4, c.115], но там мы с удивлением обнаруживаем всего лишь гистограмму длительностей правлений, ни о каких погрешностях речи не идет). Теперь нам потребуется определить «виртуальные» города. Оказывается, странный составитель списка мог вместо широты и долготы дважды написать широту или долготу, или записать вместо долготы сумму широты и долготы. Подсчитаем отношение числа получившихся виртуальных городов, попадающих в нарисованный прямоугольник (включая два рассматриваемых города) к полному числу виртуальных городов (в общем виде это число будет выглядеть следующим образом: V=Nx3x4n-2x2, где N — число династий, а n — размерность; для каждого из городов-династий с n=2, получаем следующие 6 вариантов — (l,b); (b,b); (l+b,b); (l,l); (b,l); (l+b,l), где l и b — долгота и широта). Получившееся число А. Т. Фоменко предлагает считать мерой близости . При этом сделано еще одно неявное необоснованное допущение о равновероятности всех таких «виртуальных вариаций». Есть еще небольшая тонкость, что виртуальные династии надо строить только от тех реальных, у которых по крайней мере 2/3n+1 координат попадают в границы расширенного n-мерного прямоугольника (еще одно непонятное предположение).

От профессионального математика, академика А. Т. Фоменко вполне можно было бы ожидать аналитического рассмотрения свойств получающейся меры. Однако такого анализа сделано не было. Предлагается просто поверить, что мера работает хорошо, и обеспечивает надежное различения «зависимых» и «независимых» династий. Проверим.

Перейти на страницу:

Похожие книги

Лжеправители
Лжеправители

Власть притягивает людей как магнит, манит их невероятными возможностями и, как это ни печально, зачастую заставляет забывать об ответственности, которая из власти же и проистекает. Вероятно, именно поэтому, когда представляется даже малейшая возможность заполучить власть, многие идут на это, используя любые средства и даже проливая кровь – чаще чужую, но иногда и свою собственную. Так появляются лжеправители и самозванцы, претендующие на власть без каких бы то ни было оснований. При этом некоторые из них – например, Хоремхеб или Исэ Синкуро, – придя к власти далеко не праведным путем, становятся не самыми худшими из правителей, и память о них еще долго хранят благодарные подданные.Но большинство самозванцев, претендуя на власть, заботятся только о собственной выгоде, мечтая о богатстве и почестях или, на худой конец, рассчитывая хотя бы привлечь к себе внимание, как делали многочисленные лже-Людовики XVII или лже-Романовы. В любом случае, самозванство – это любопытный психологический феномен, поэтому даже в XXI веке оно вызывает пристальный интерес.

Анна Владимировна Корниенко

История / Политика / Образование и наука