Коэффициент Л
(X, Y) равен отношению количества точек из множества Ш, которые лежат к точке X ближе чем точка Y (в смысле декартового расстояния (3)), к полному числу точек множества Ш. Последнее число, как только что говорилось, по мысли автора — это полное число возможных хроник на данном отрезке длиной A. Величина Л(X, Y) называется «вероятностью случайного совпадения лет» (ВССЛ). Таким образом, если, например, Л(X, Y) = 10−6, то это должно означать, что из миллиона наугад взятых хроник, описывающих промежуток времени данной длины, только одна находится к хронике X также «близко», как и хроника Y. Отсюда легко сделать вывод — раз чрезвычайно мала вероятность того, что столь близкое совпадение хроник X и Y случайно, то они обязаны описывать одни и те же события, что и требуется доказать автору.Неправда ли, все это звучит весьма убедительно? И, конечно, нельзя упрекнуть читателей, которые, не проникая глубже в методику Фоменко, остаются здесь вполне убежденными в достоверности оценок, получаемых с помощью Л
(X, Y). И, однако, это не так.Начнем, сперва, с возражений чисто теоретического характера. Замечательным свойством меры Л
(X, Y) является ее некоммутативность, поскольку в общем случаеЛ
(X, Y) ≠ Л(Y, X)Чтобы в этом убедиться, достаточно простейшего примера: А
=2, n=2, X(2, 0), Y(1, 1), тогда Л(X, Y)=2/3, а Л(X, Y)=1. Некоммутативность ставит под сомнение саму возможность сделать из этого коэффициента какой-нибудь вывод, ведь если хроника X близка к Y по мере Л(X, Y), то вовсе необязательно, что Y также близка к X по мере Л(X, Y). Очевидно, что автору необходимо как минимум каждый раз, сравнивая хроники, определять обе меры и предъявлять их читателю, а если они совпадают, специально оговаривать этот случай. К сожалению, мы не найдем этого в цитируемой книге. Только в 3-ем ее издании (1999 г.) мы видим, что автор заменяет Л(X, Y) на среднее значение Л(X, Y) и Л(Y, X), с помощью этого добиваясь коммутации. Однако, замечательно, что при этом автором не исправлено ни одно из посчитанных еще в 1-м издании книги конкретных значений коэффициента, что вызывает у читателя законные вопросы.Вторым важным замечанием является отсутствие связи между выводами, получаемыми с помощью Л
(X, Y), и выводами, которые дают стандартные коэффициенты линейной корреляции и регрессии. Убедимся в этом на конкретном примере. Здесь и далее в примерах мы будем полагать значения А=450 лет, и n=15 — эти числа, с одной стороны, удобны для вычислений, а с другой, почти не отличаются от параметров ключевой «совпадающей» пары «Новой хронологии»: Тит Ливий — Грегоровиус (см. ниже). Рассмотрим следующие два ряда по 15 чисел с суммой 450 (они были получены, да поверит нам читатель, не подбором, а наугад, с использованием датчика случайных чисел[250])X
(25, 24, 24, 22, 28, 23, 32, 33, 37, 25, 32, 39, 32, 33, 41) Y
(36, 28, 23, 38, 20, 35, 31, 26, 28, 31, 30, 27, 39, 22, 36)Даже при тщательном взгляде на ряды, увидеть в них какую-либо корреляцию, напоминающую связь (1)
, сложно. Об этом же свидетельствует и коэффициент линейной корреляции, дающий малое значение, равноеr
= −0.101При этом, чтобы сделать вывод о существовании связи хотя бы с 50% вероятностью (см. (2')
), требовалось бы значение r по модулю превосходящее 0.6/ √ 15 = 0.185, достоверная же оценка существования корреляции (на уровне 99%), требует значений коэффициента |r| > 3 / √ 15 = 0.77.
Вычисление регрессионной связи рядов X и Y иллюстрирует следующий рисунок. На нем отсутствует какое-либо выделенное направление в распределении точек, соответствовавшее бы их линейной связи, что и доказывают следующие статистические показатели. Прямая, подобранная по методу наименьших квадратов (см. рис.), обладает коэффициентом регрессии
k
= −0,098.(в случае связи (1)
этот коэффициент с необходимостью равнялся бы единице). При этом средняя ошибка коэффициента регрессии μ = 0.268, т.е. более чем в два раза превосходит абсолютное значение самого коэффициента, что не позволяет говорить о какой-либо значимости линейной связи.Итак, и коэффициент линейной корреляции, и коэффициент регрессии отвергают возможность существования связи (1)
для данных рядов X и Y. Тем не менее удивительным будет узнать, что коэффициент Л(X, Y) определяет эти ряды как зависимые друг от друга, с вероятностью случайного совпадения не более 2 шансов на миллион (Л(X, Y) <2x10−6).Происхождение «малых чисел»
Расскажем подробнее, как получается эта оценка. Для n
, много больших единицы при вычислении Л(X, Y) автор заменяет подсчет целочисленных точек вычислением объемов соответствующих множеств, т.е.