Как только мы хотим приложить эти посылки математики к действительному изображению действительного мира и ставим ряд требований художественных, то мы неизбежно привносим целый ряд новых предпосылок, не ясных и не бесспорных. Наша задача — разобраться в этих предпосылках, не особенно углубляясь в перспективу как чисто математический метод.
Проблемы, связанные с перспективой, распадаются на два класса: формально–математическую и некоторую реальную. Что касается реальных предпосылок, то поскольку перспектива притязает быть способом изображения мира, познанного нами, постольку вступает несколько кругов более или менее самостоятельных проблем: во–первых, вопрос о самом мире, насколько к миру приложимы отвлеченные приложения, которые дает нам математика вообще и геометрия в частности; во–вторых, два круга вопросов: насколько эти отвлеченные предпосылки применимы в том реальном восприятии действительного мира, которое нам нужно, чтобы дать изображение. В–третьих, проблемы самого изображения: насколько то, что мы познали, способно поддаваться тому приему изображения, которое нам предлагает перспектива.
Потом выступают вопросы о художественности, т. е. насколько то, что мы можем изобразить путем перспективы, насколько оно согласовано с требованиями художественности, подчиняется им или, наоборот, должно быть в силу требований художественного восприятия мира оставлено, изменено.
И последняя группа вопросов, которые нам необходимо рассмотреть, —вопросы порядка исторического и тем самым связанные с вопросами
С другой стороны, ясно должно быть и то, что хотя(бы) в предварительном обсуждении,
Наметим самый первый вопрос, который касается геометрических и аналитических предпосылок перспективы. Общее понятие перспективы может быть дано геометрически более просто, если мы от изображения на двухмерном пространстве перейдем к изображению на линии, если вместо картинной плоскости мы будем рассматривать картинную линию. Пример:
А В
Рис. 8
У нас есть прямая линия, на которой имеются несколько точек, и имеется другая прямая линия, которая соответствует плоскости изображения. Геометрической перспективой этого изображения будет совокупность таких точек, которые засекутся на этой прямой пучком прямых, восходящих из одной точки. Возьмем некоторую точку и соединим эту точку с точками на линии АВ. Совокупность точек носит название проекции. Каждый из лучей пересечет в одной точке прямую, и число этих точек остается неизменным. С другой стороны — порядок точек тоже сохранится, т. е. если точка третья стоит вправо от второй, а точка первая влево от второй, то и на второй линии точка третья будет стоять вправо от второй, а первая — влево от второй. Если мы представим теперь то, что называется текущею точкой, которая непрерывно движется, то изображение ее (4) будет двигаться. Есть некоторое соответствие того, что происходит на линии АВ, с тем, что происходит на линии ab.
Если мы спросим, сохраняются ли количественные соотношения между точками первой прямой или второй прямой, то мы увидим, что этого нет. Расстояния между точками первой и второй прямой не равны. Сохраняется ли пропорциональность в расстоянии? Отношения не изменятся, останутся теми же самыми. Сколько раз мы ни проектировали бы на некоторую произвольную прямую из некоторых произвольных точек, всегда будем получать одни и те же сложные отношения. При наличии этих инвариантностей мы думаем, что что‑то главное от этой совокупности точек при всех отображениях остается у нас, остаются как бы основные элементы формы. То, что мы сказали относительно точек на прямых, может быть сказано и о плоскости. В сущности, этим рассказана вся перспектива по отношению к линиям.
Аналогичным образом даются основные посылки перспективы для трехмерного пространства. Но мы сначала будем говорить о трехмерном пространстве как о плоскостях в трехмерном пространстве. Точку