Читаем История и философия искусства полностью

Трехмерное пространство тоже характеризуется в каждой точке мерою кривизны, причем делается быстрый переход, отнюдь геометрически не обоснованный, что как двухмерное пространство может быть искривленным, так же —и трехмерное. Чаще всего обсуждения неевклидовских пространств и ограничиваются областями двухмерными. Когда же подвергается обсуждению и пространство трехмерное, то кривизна его вводится лишь формально–аналитически, как некоторое выражение дифференциальных параметров и не имеет ни геометрической наглядности, ни физической уловимости. Остается неясным, что именно должен сделать физик, хотя бы в мыслимом опыте, чтобы иметь случай так или иначе высказаться о кривизне изучаемого им пространства. Отвлеченно геометрически кривизна пространства должна выражаться искривлением прямейших, т. е. кратчайших, или геодезических, линий. Но, как разъяснено выше, физик, оставаясь со всеми своими инструментами, и даже со всеми своими наглядными представлениями в пределах этого самого трехмерного мира и подвергаясь, быть может, той же деформации, что и исследуемая геодезическая [линия], по–видимому, не имеет способа непосредственно убедиться в искривленности прямейшей. Понятие, которого не хватает при обсуждении неевклидовских пространств, однако, легко может быть построено, если обратиться к предыдущему. Это понятие есть относительное изменение емкости пространства.

Все дело в том, что одно и то же геометрическое тело, при разной кривизне пространства, будет иметь и разную емкость. Изменение этой емкости, отнесенное к единице объема, будет измерять кривизну трехмерного пространства. Более точно к пониманию меры кривизны можно подойти так:

Представим[68] себе тетраэдр, наполненный несжимаемою жидкостью. Пусть ребра этого тетраэдра гибки, но не растяжимы, и всегда натягиваются, т. е. суть прямейшие; грани же этого тетраэдра будем представлять себе способными растягиваться и сжиматься. Сумма телесных углов этого тетраэдра равна 4π, т. е. четырем прямым телесным углам. Представим себе теперь, что наш тетраэдр перенесен в неевклидовское пространство. Тогда он деформируется: его ребра пройдут по геодезическим, грани станут плоскостями этого нового пространства. Следовательно, телесные углы изменятся, и сумма их уже не будет 2π, а потому изменится и объем тетраэдра. Следовательно, содержащейся в нем жидкости станет теперь либо слишком мало, либо слишком много; этот избыток, понимая его в алгебраическом смысле, зависит от степени деформации тетраэдра, следовательно — от избытка суммы телесных углов деформированного тетраэдра над 4π. Но, с другой стороны, деформация тетраэдра и все вытекающие отсюда последствия зависят от степени искривленности данного пространства, и, следовательно, относительное изменение емкости тетраэдра характеризует кривизну пространства.

Можно высказать, таким образом, теорему, аналогичную теореме Гаусса:

Тут dbз есть элемент объема, /Г3 — кривизна трехмерного пространства, 2р3 — сумма телесных углов тетраэдра, интеграл же распространяется на весь объем тетраэдра. Это значит: избыток суммы телесных углов над 4π, который может быть назван гиперсферическим избытком, накапливается в тетраэдре каждым элементом его объема, но в различной степени; интенсивность этого накопления в каждом месте характеризуется мерой кривизны.

Итак, кривизна пространства тут понимается как удельная емкость пространства данной точки. Написанное соотношение дает по–прежнему:

где К3 есть среаняя кривизна пространства внутри тетраэдра.

Очевидно:

т. е. средняя кривизна равняется отношению гиперсферического избытка, рассчитанного на единицу объема. Делая тетраэдр все меньше и затягивая его около точки, мы заставим сферический избыток, рассчитанный на единицу объема, стремиться к некоторому пределу, и предел этот есть истинная кривизна в точке, около которой сжимается тетраэдр.

Можно пояснить весь этот прием на частном примере. Перенесем тетраэдр на гиперсферу, так чтобы всеми своими вершинами он расположился в трехмерном многообразии, содержащем четырехмерное содержимое многообразие гиперсферы. —Ясное дело, в нетронутом виде он не совпадет с содержащим гиперсферу многообразием, и для совпадения должен быть искривлен. Тогда ребра тетраэдра пойдут по большим кругам—геодезическим содержащего многообразия гиперсферы; грани совпадут с большими сферами того же содержащего многообразия, а объем деформированного тетраэдра составит часть объема вышеуказанного содержащего многообразия. Получится гиперсферический тетраэдр, аналогичный в двухмерном пространстве сферическому треугольнику. Измеряя телесные углы этого гиперсферического тетраэдра, мы нашли бы сумму их большею, нежели 4π. Разность той и другой величины зависит очевидно от степени искривленности тетраэдра, т. е. от кривизны гиперсферы, или от величины

а кроме того, она зависит от размеров тетраэдра.

Перейти на страницу:

Похожие книги

Свет Валаама. От Андрея Первозванного до наших дней
Свет Валаама. От Андрея Первозванного до наших дней

История Валаамского монастыря неотделима от истории Руси-России. Как и наша Родина, монастырь не раз восставал из пепла и руин, возрождался духовно. Апостол Андрей Первозванный предсказал великое будущее Валааму, которое наступило с основанием и расцветом монашеской обители. Без сомнения, Валаам является неиссякаемым источником русской духовности и столпом Православия. Тысячи паломников ежегодно посещают этот удивительный уголок Русского Севера, заново возрожденный на исходе XX столетия. Автор книги известный писатель Н. М. Коняев рассказывает об истории Валаамской обители, о выдающихся подвижниках благочестия – настоятеле Валаамского монастыря игумене Дамаскине, святителе Игнатии (Брянчанинове), о Сергие и Германе Валаамских, основателях обители.

Николай Михайлович Коняев

Религия, религиозная литература