Читаем История инженерной деятельности полностью

Для многих современных машин, аппаратов, приборов, в том числе для бытовых радио- и электротехнических устройств, требуются химические источники тока, производство которых стало важной отраслью технической электрохимии. Химические источники тока подразделяются на первичные (гальванические элементы одноразового использования) и вторичные (аккумуляторы многоразового использования).

В современной технике начали успешно применять новые источники электрического тока – топливные элементы. В них ток возникает в результате химического взаимодействия горючих веществ – водорода, бензина, дизельного топлица, угля, природного газа, амиака, металлов с разными окислителями, чаще с кислородом. Здесь мы имеем дело с прямым превращением химической формы энергии в электрическую.

Наибольшее распространение получили водородно-кислородные электрохимические генераторы. Электроды для них изготавливают из каталитически активных металлов ( из губчатого никеля или платины – водородный электрод и активного серебра – кислородный). Электролитом служит раствор кислоты или щелочи. В этих элементах катод омывается струей водорода, а анод – струей кислорода. Электрический ток генерируется при непосредственном контакте трех фаз – газообразной (водород, кислород), жидкой (электролит) и твердой (материал электродов).

На поверхности катода молекулы водорода теряют свои электроны, соединяются с гидроксид-ионами электролита и образуют молекулы воды.

На аноде молекулы кислорода присоединяют электроны, которые движутся по проводнику от катода, соединяются с молекулами воды, в результате чего образуются гидроксид-ионы.

Топливные элементы имеют КПД почти в два раза выше, чем паровые турбины. Кроме того, у них нет движущихся частей, они долговечные, работают без шума, не образуют вредных отходов.

В космической технике наряду с солнечными батареями и радиоизотопными источниками энергии широко применяются и топливные элементы.

Для длительных полетов в космос немаловажное значение будут иметь биохимические топливные элементы. В них окислительно-восстановительные превращения осуществляются с помощью микроорганизмов, в результате чего и генерируется электрический ток. В условиях космического полета в биоэлементах будут перерабатываться отходы человеческой жизнедеятельности, а взамен образуются электрический ток, питьевая вода и невредные побочные продукты (углекислый газ, азот, соли).

Но самая перспективная отрасль использования водородно-кислородных топливных элементов – энергетика. Так, при малой нагрузке электростанции (например, ночью) топливный элемент функционирует как электролизер – разлагает воду и накопляет водород и кислород в газгольдерах высокого давления. При перегрузке электростанции водородно-кислородный элемент «сжигает» сжатые водород и кислород, и работает как электрохимический генератор, то есть вырабатывает дополнительный электрический ток.

Современная техника, в основном ядерная энергетика, требует огромного количества тяжелой воды, которая служит прекрасным замедлителем нейтронов в ядерных реакторах и источником для получения дейтерия.

Тяжелую воду можно получить электрохимическим способом – электролизом обычной воды. Дело в том, что в молекуле воды атом дейтерия связан с атомом кислорода прочнее, чем атом водорода. А в растворе ион дейтерия двигается медленнее, чем ион водорода. Поэтому во время электролиза разлагается в основном обычная вода, а тяжелая вода накопляется в остатке. Высококонцентрированные растворы тяжелой воды можно разделить фракционной перегонкой и получить 100-процентную тяжелую воду.

Но специально разлагать воду электролизом с целью получения тяжелой воды не выгодно. Поэтому тяжелую воду выделяют из остатков в электролизерах при получении водорода, кислорода, хлора, едкого натра и т.п.

Электрохимия приходит также на помощь в деле охраны окружающей среды. При очистке сточных вод и отработанных газов применяется электролиз.

Второй вид помощи, который оказывает электролиз в борьбе за охрану окружающей среды, связан с возможностью заменять производства с выделением вредных, загрязняющих окружающую среду веществ, электрохимическими производствами, где загрязнение намного меньше. Очевидно, например, гидрометаллургические производства намного чище пирометаллургических, в результате работы которых выделяются и теплота, и пыль, и дым.

Важное место занимают электрохимические методы для количественного определения веществ в почве, воде, воздухе, и даже в живых организмах. Одним из таких методов является электроанализ, при котором проводится электролиз и взвешивается выделившееся за определенное время вещество. Таким методом является и полярография, где чаще всего электролиз происходит на ртутный электрод и о свойствах данного вида ионов можно судить по потенциалу разложения.

При потенциометрическом титровании наблюдают электродвижущую силу гальванического элемента, созданного при участии тех ионов раствора, которые следует определить.


В Ы В О Д Ы

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже