Чтобы понять этот факт, мы можем рассмотреть простой случай волнового движения в одном направлении (одномерный случай), представляемого движением струны, закрепленной на концах. Поскольку концы струны не могут двигаться, единственными возможными являются колебания, показанные на рис. 15, которые на музыкальном языке соответствуют основной ноте и различным гармоникам (обертонам): на длине струны могут существовать полволны, две полуволны, три, десять, тысяча и любое целое число полуволн. Соответствующие частоты колебаний в два, три, десять, тысячу раз больше, чем частота основной ноты. В случае стационарных волн в трехмерной коробке (полости), например, в кубе ситуация такая же, хотя и немного сложнее, но результат тот же в том смысле, что имеется неограниченное число разных колебаний, с длинами волн все короче, и с соответствующими частотами все выше. Если мы примем принцип равновесности и будем считать, что Е — полная энергия, заключенная в полости, тогда эта энергия, деленная на полное число мод, будет соответствовать энергии одиночного колебания и, поскольку число мод бесконечно, эта энергия должна быть бесконечно малой величиной! Это заключение совершенно абсурдно, и даже невероятно, если мы приложим его к черному телу Кирхгофа. Если мы позволим некоторому, малой величины, излучению на некоторой длине волны, например красной, попасть в полость, то оно там начнет взаимодействовать со стенками и будет распределено среди бесконечных колебательных мод, содержащихся в полости, т.е. среди бесконечного числа частот, простирающихся ниже, чем красная, и выше, чем красная, т.е. в области ультрафиолетового излучения, рентгеновского, -лучей и т.д. Этот парадоксальный результат был назван «ультрафиолетовой катастрофой». Согласно этому анализу, открытая дверца печи на кухне должна была бы быть источником рентгеновских и -лучей, подобно атомной бомбе!
Статья Рэлея, опубликованная в июне 1900 г., содержала всего две страницы, но ясно и недвусмысленно показывала неизбежный результат, который получается при применении классической статистической механики к проблеме излучения. Ни Планк, ни его коллеги экспериментаторы X. Рубенс (1865-1922) и Ф. Курлбаум (1857-1927) не воспринимали работу Рэлея очень серьезно. Закон распределения, предложенный Рэлеем, при сопоставлении с экспериментальными данными показывал расхождение, кроме области длинных волн. Поэтому он сперва был отвергнут, так же как и некоторые другие законы, предложенные на основе разных гипотез.
Закон Планка
Теоретическая ситуация, как описывают, была следующей. Когда в воскресенье 7 октября 1900 г. X. Рубенс со своей женой посетил Планков, он рассказал Планку об измерениях на длинах волн до 50 мкм, которые он произвел вместе с Ф. Курлбаумом в Берлинском институте. Эти измерения показали определенное отклонение от предположений согласно закону Вина, но были в согласии с новой формулой Рэлея. Публичное представление этих результатов должно было состояться 19 октября на сессии Германского Физического общества. Перед этим заседанием Планк старался модифицировать свое выражение для энтропии осцилляторов так, чтобы оно согласовывалось с новыми результатами, все еще придерживаясь основ термодинамических рассмотрений, он вывел закон распределения, который сегодня носит его имя. Той же ночью он послал открытку Рубенсу с новой формулой, которая была получена на следующее утро. Спустя день или два Рубенс пришел к Планку и показал ему экспериментальные результаты, которые прекрасно совпадали с новой формулой. На собрании Германского Физического общества 19 октября Курлбаум представил эксперименты, выполненные с Рубенсом, и в последовавшей оживленной дискуссии, Планк представил свою новую формулу в комментарии, озаглавленном «Об улучшении закона излучения Вина». «В тот же день, в который я сформулировал этот закон, я поставил перед собой задачу придать ему правильный физический смысл», — говорил Планк позднее, и после нескольких недель самой напряженной работы в его жизни, он 14 декабря снова на заседании Германского Физического общества смог объяснить физические гипотезы, которые поддерживали этот закон.
В своей лекции Планк утверждал, что согласно некоторым довольно сложным вычислениям, которые он выполнил, можно найти способ исправить парадоксальные заключения, полученные Рэлеем, и избежать опасности ультрафиолетовой катастрофы, если принять постулат, что энергия E электромагнитных волн (включая видимый свет) может существовать только в форме некоторого пакета с энергией, содержащейся в каждом пакете, прямо пропорциональной соответствующей частоте f: