Читаем История лазера полностью

«Поэтому мы должны рассмотреть следующий закон на основе квантовой теории Планка. Энергия элементарного резонатора (осциллятора) может принимать только величины, которые кратны целым числам (от энергии кванта света); энергия резонатора изменяется скачками путем поглощения или испускания в целых числах [от той же самой величины]».

Этими словами Эйнштейн обострил внимание на том, что он рассматривал главным в теории излучения Планка, а именно, факт, что резонаторы в полости изменяют свою энергию только конечными величинами, т.е. не непрерывно, а скачками. Двумя годами позднее Лоренц пришел к такому же заключению, что Планк ввел совершенно новую гипотезу, которая противоречит обычным законам электродинамики.

В 1909 г., четыре года после его работы по фотоэлектрическому эффекту, Эйнштейн опубликовал работу, в которой он продемонстрировал, что закон излучения Планка означает, что излучение проявляет комбинированную волновую и корпускулярную природу. Этот результат был первым ясным указанием на т.н. волново-частичный [2]дуализм, который позднее будет широко обсуждаться в квантовой механике.

В ретроспективе интересно отметить, что в споре XVII в., о волновой или корпускулярной природе света между двумя гигантами (Ньютон и Гюйгенс) оба оппонента подходили каждый своим путем к двусторонней проблеме.


Индуцированное излучение

Квантовая теория получила полное признание на первом Сольвеевском конгрессе, состоявшемся в 1911 г. при финансовой поддержке бельгийского ученого Эрнеста Сольве (1883—1922), который разработал промышленный способ производства соды. Этот конгресс был организован Вальтером Нернстом в 1911 г. с целью спровоцировать открытую дискуссию о «кризисе», вызванном введением в физику квантовых идей. Оставляя развитие квантовой теории, мы теперь вернемся к исследованиям света Эйнштейном.

Эйнштейн был сильно увлечен проблемой природы света, и в 1915— 1916 гг. опубликовал работу Strahlung-Emission und Absorption nach der Quantentheorie, которая является фундаментальной и кардинальной в нашей истории. Он продолжал размышлять над теорией черного тела Планка и искусственным в некотором смысле способе, каким он решил проблему, введя концепцию квантования энергии. Затем, в 1916 г., он опубликовал новое, крайне простое и изящное доказательство закона Планка и в то же самое время получил важные результаты, касающиеся испускания и поглощения света атомами и молекулами. В этой работе впервые была введена концепция индуцированного излучения, которая является фундаментальной для лазерного эффекта. Он мастерски объединил «классические законы» с новыми концепциями квантовой механики, которая в то время развивалась под руководством Бора.

Эйнштейн рассматривал молекулы, заключенные в сосуде. Согласно постулатам Бора, разработанным к тому времени, каждая молекула может иметь лишь дискретный набор состояний с определенными энергиями. Если большое число таких молекул составляют газ при некоторой температуре, то вероятность одной молекулы находиться в определенном состоянии можно установить, применяя законы статистической механики, установленные Гиббсом, Максвеллом и Больцманом. Эйнштейн предположил, что молекулы обмениваются энергией с излучением, которое присутствует в объеме за счет трех процессов.

Первый процесс, который мы сегодня называем «спонтанным излучением», происходит, если молекула находится не в низшем состоянии энергии, а в некотором высшем состоянии. Тогда она будет переходить в состояние с низкой энергией, испуская фотон с энергией, которая точно равна разности энергий этих двух состояний (рис. 22, а). Этот процесс девозбуждения является процессом, описываемым Бором для молекулы или возбужденного атома скачком переходить в состояние с низшей энергией. Эйнштейн предположил, что этот процесс происходит случайным образом, подобным тому, как радиоактивный атом распадается во времени.

Второй процесс может рассматриваться как обратный первому и является процессом поглощения. Молекула, находящаяся в определенном состоянии энергии, может перейти в более высокое состояние, если ударится с фотоном, имеющим энергию, как раз равную разности между двумя состояниями (рис. 22, б). Этот процесс также рассмотрен Бором. В этом случае фотон исчезает (поглощается) и молекула получает всю его энергию, чтобы перейти на высшее энергетическое состояние.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже