Читаем История математики. От счетных палочек до бессчетных вселенных полностью

Почему геометрия часто описывается как «холодная» и «сухая»? Одна из причин этого лежит в ее неспособности описать форму облака, горы, береговой линии или дерева. Облака — не сферы, горы — не конусы, береговые линии — не окружности, кора не гладкая, и даже свет двигается не по идеально прямой линии. В более широком смысле я утверждаю, что многие природные формы настолько нерегулярны и фрагментированы, что, по сравнению с Евклидом… природа демонстрирует не просто более высокую степень, но совершенно иной уровень сложности. Число природных форм различных размеров практически бесконечно — и так во всем.

Существование этих форм предполагает необходимость изучать формы, которые Евклид вообще отбрасывает как «бесформенные», — морфологию «аморфных тел». Математики же презирали эту необходимость, стремясь убежать от природы. Они изобретали теории, совершенно не связанные с тем, что мы можем видеть или чувствовать.

Я выдумал термин «фрактал», создав его из латинского прилагательного «fractus». Соответствующий латинский глагол «frangere» означает «разбивать», то есть создавать несимметричные фрагменты. Поэтому — и это очень подходит для наших нужд! — в дополнение к «фрагментированности» (как во «фракции» или «рефракции»), «fractus» должен также означать «нерегулярный». Оба значения сохраняются в термине «фрагмент».

Я совершенно убежден, что ученые будут удивлены и восхищены, узнав, что многие формы, которые они должны были бы называть негладкими, шероховатыми, змеевидными, ни на что не похожими, прыщавыми, рябыми и неровными, ветвистыми, похожими на клубок водорослей или клуб дыма, странными, запутанными, извилистыми, изогнутыми, морщинистыми и т. п., теперь можно описывать строгим количественным способом.

Бенуа Мандельброт. Фрактальная геометрия природы (1982)
<p>Благодарности</p>

Я премного благодарен профессору Айвору Граттану-Гиннесу за его решительную поддержку моих разнообразных проектов, а также за его долготерпение и благоразумные советы касательно текста этой книги. Все оставшиеся ошибки — разумеется, мои собственные. Спасибо Питеру Таллаку за его восторженную поддержку моего ведения этой книги и Тиму Уитингу за то, что он лелеял ее, пока книга не обрела должную форму. Также я благодарен Группе математики и статистики Университета Мидлсекс, а также многим членам Британского общества по истории математики, равно как всем, кто присылал мне свои советы по почте. Еще я хотел бы поблагодарить моих друзей, которые последние два-три года поддерживали огонь этой книги: Эйлин Барлекс, Бена Дики, Юрия Габриеля, Питера Гришена, Дейва Джексона, Криса Масланку, Дэвида Принса, Джона Ронейна и Дэвида Сингмастера. Бесконечная благодарность — моим родителям, и извинения перед всеми, кого я по недомыслию упустил упомянуть.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное