Читаем История нефти. «Чёрное золото» – универсальный продукт полностью

Производство синтетических пластмасс основано на реакциях исходных веществ, выделяемых из угля, нефти или природного газа, таких, к примеру, как бензол, этилен, фенол, ацетилен и других.

В настоящее время на нефтеперерабатывающем заводе сырая нефть нагревается в печи, и углеводороды разделяются на разные группы, а затем их подают в дистилляционную трубу. Внутри неё более тяжёлые углеводороды опускаются на дно, а более лёгкие поднимаются вверх. В результате сырая нефть разделяется на несколько отдельных фракций, таких как нефть, бензин и парафин, каждая из которых содержит углеводороды одинакового веса и длины. Одна из этих фракций – более лёгкая летучая нафта, которая станет основным сырьём для производства пластика.

Два из множества содержащихся в ней углеводородов – это этан и пропен. Сначала их разбивают на более мелкие единицы, мономеры. Из этана получается этилен, из пропена – пропилен. Потом их полимеризуют, то есть из мономеров делают полимеры. Получаются полиэтилен и полипропилен, два самых распространенных и широко производимых полимера на Земле.

Состав полиэтилена позволяет использовать его для изготовления пластиков разной плотности, он может быть и хрупким, и прочным. Полипропилен – гибкий и эластичный. И именно из этих материалов делаются предметы одноразового использования, такие как картон для молока, пластиковая обёртка, трубочки для питья, бутылки с водой, пакеты для покупок, контейнеры для шампуня или других жидкостей и т. п.

Другие типы углеводородов выделяются и расщепляются из нефти и природного газа и также используются для производства пластика. Полимеры могут состоять из одного повторяющегося мономера, как в полиэтилене и полипропилене, или могут включать комбинации нескольких типов мономеров.

Кроме того, полимерные цепи могут обработать различными способами и смешать с различными добавками (антиоксидантами, пенообразователями, пластификаторами, антипиренами), которые позволяют им выполнять множество функций и делают пластмассы универсальными.

Практически сразу же промышленное производство полимеров проходило в двух направлениях – путём переработки природных органических полимеров в искусственные полимерные материалы и путём получения синтетических полимеров.

Природные органические полимеры делаются на основе целлюлозы. Первый из них – описанный выше целулоид. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят плёнки, волокна, лакокрасочные материалы и загустители.

Производство синтетических полимеров началось с изобретения бакелита. В течение десятилетий он применялся для изготовления корпусов электротехнических приборов, аккумуляторов, телевизоров, розеток и т. п., а в настоящее время чаще используется как связующее и адгезивное вещество.

Благодаря усилиям Генри Форда перед Первой мировой войной началось бурное развитие автомобильной промышленности сначала на основе натурального, затем – и синтетического каучука. Потом, лет через 20, это производство было освоено в Советском Союзе, Англии, Германии. В эти же годы появилось промышленное производство полистирола и поливинилхлорида, являющихся прекрасными электроизолирующими материалами, а также полиметилметакрилата – основы оргстекла.

После войны возобновилось производство полиамидного волокна и тканей (капрон, нейлон), начатое ещё до войны. В 50-х годах XX века было разработано полиэфирное волокно и освоено производство тканей на его основе под названием лавсан или полиэтилентерефталат. Полипропилен и нитрон – искусственная шерсть из полиакрилонитрила – тоже входят в список синтетических волокон, которые использует современный человек для одежды и производственной деятельности.

В середине 1950-х годов появились полимерные материалы на основе полиолефинов и прежде всего полипропилена и полиэтилена низкого давления, а также стереорегулярных полимеров, способных к кристаллизации. Затем были внедрены в массовое производство полиуретаны, поролон и полисилоксаны.

При этом пластик практически не разлагается в природе. Он может лежать столетиями. А если он все-таки распадается под воздействием солнечного света, воды и ветра, то выбрасывает содержащиеся внутри парниковые газы, а также выщелачивающие химические вещества, добавляемые в процессе производства, обратно в окружающую среду. И это в любом случае оборачивается экологической катастрофой. И когда он не разлагается, и когда он разлагается.

Помочь может производство биоразлагаемого пластика. Причем его не обязательно делать из биологических источников, таких как кукурузный крахмал. Его надо делать из полимеров, которые могут достаточно эффективно разрушаться микробами в воде и почве.

Уже сейчас полилактиды используются для изготовления одноразовых предметов, таких как чашки, столовые приборы и трубочки, которые могут более эффективно разлагаться при попадании в окружающую среду.

Перейти на страницу:

Все книги серии Занимательная наука (Центрполиграф)

Откуда приходят герои любимых книг. Литературное зазеркалье. Живые судьбы в книжном отражении
Откуда приходят герои любимых книг. Литературное зазеркалье. Живые судьбы в книжном отражении

А вы когда-нибудь задумывались над тем, где родилась Золушка? Знаете ли вы, что Белоснежка пала жертвой придворных интриг? Что были времена, когда реальный Бэтмен патрулировал улицы Нью-Йорка, настоящий Робинзон Крузо дни напролет ждал корабля на необитаемом острове, который, кстати, впоследствии назвали его именем, а прототип Алеши из «Черной курицы» Погорельского вырос и послужил прототипом Алексея Вронского в «Анне Карениной»? Согласитесь, интересно изучать произведения известных авторов под столь непривычным углом. Из этой книги вы узнаете, что печальная история Муму писана с натуры, что Туве Янссон чуть было не вышла замуж за прототипа своего Снусмумрика, а Джоан Роулинг развелась с прототипом Златопуста Локонса. Многие литературные герои — отражение настоящих людей. Читайте, и вы узнаете, что жил некогда реальный злодей Синяя Борода, что Штирлиц не плод фантазии Юлиана Семенова, а маленькая Алиса родилась вовсе не в Стране чудес… Будем рады, если чтение этой книги принесет вам столько же открытий, сколько принесло нам во время работы над текстом.

Юлия Игоревна Андреева

Языкознание, иностранные языки
Знаем ли мы все о классиках мировой литературы?
Знаем ли мы все о классиках мировой литературы?

…«И гений, парадоксов друг» – гений и впрямь может быть другом парадоксов своей биографии… Как только писателя причисляют к сонму классиков – происходит небожественное чудо: живого человека заменяет икона в виде портрета в кабинете литературы, а всё, что не укладывается в канон, как будто стирается ластиком из его биографии. А не укладывается не так уж мало. Пушкин – «Солнце русской поэзии» – в жизни был сердцеедом, разрушившим множество женских судеб, а в личной переписке – иногда и пошляком. Можно умиляться светлым отрывкам из недавно введённого в школьную программу «Лета Господня» Ивана Шмелёва, но как забыть о том, что одновременно с этой книгой он писал пламенные оды в поддержку Гитлера? В школе обходят эти трудности, предлагая детям удобный миф, «хрестоматийный глянец» вместо живого человека. В этой книге есть и не слишком приглядные подробности из биографий русских классиков. Их вполне достаточно для того, чтобы стряхнуть с их тел гранитно-чугунную шинель официозной иконы. Когда писатели становятся гораздо более живыми, чем на страницах учебников, то и их позитивное воздействие на нас обретает большую ценность.

Мария Дмитриевна Аксенова

Литературоведение
Логика случая. О природе и происхождении биологической эволюции
Логика случая. О природе и происхождении биологической эволюции

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эволюции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход — вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Евгений Викторович Кунин

Биология, биофизика, биохимия / Биология / Образование и наука

Похожие книги

Жизнь замечательных устройств
Жизнь замечательных устройств

Как прославиться химику? Очень просто! В честь него могут быть названы открытая им реакция, новое вещество или даже реагент! Но если этого недостаточно, то у такого ученого есть и ещё один способ оставить память о себе: разработать посуду, прибор или другое устройство, которое будет называться его именем. Через годы название этой посуды сократится просто до фамилии ученого — в лаборатории мы редко говорим «холодильник Либиха», «насадка Вюрца». Чаще можно услышать что-то типа: «А кто вюрца немытого в раковине бросил?» или: «Опять у либиха кто-то лапку отломал». Героями этой книги стали устройства, созданные учеными в помощь своим исследованиям. Многие ли знают, кто такой Петри, чашку имени которого используют и химики, и микробиологи, а кто навскидку скажет, кто изобрёл такое устройство, как пипетка? Кого поминать добрым словом, когда мы закапываем себе в глаза капли?

Аркадий Искандерович Курамшин

История техники
Антикитерский механизм. Самое загадочное изобретение Античности
Антикитерский механизм. Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков. Только благодаря энтузиазму немногих ученых, которые не смогли пройти мимо этой загадки, удалось датировать механизм и сделать его реконструкции. Прошло больше столетия со дня этой удивительной находки, но только сейчас можно говорить о том, что ее тайна наконец раскрыта. Тем не менее работа по исследованию Антикитерского механизма продолжается и далека от завершения.О том, как был найден «первый компьютер», о людях, которые посвятили себя его изучению, и о самых удивительных механизмах в истории человечества рассказывает книга Джо Мерчант.

Джо Мерчант

История техники