Знание, полученное путем конструирования, не есть продукт одного только мышления, оно обязательно предполагает созерцание и носит не чисто дискурсивный характер в отличие от знания, опирающегося на одни лишь понятия, как, например, философское. Геометрия конструирует свои понятия, опираясь на созерцание пространства: сконструированный ею предмет имеет не только величину (количество), но и определенную фигуру (качество). Арифметика же, по Канту, имеет дело с чистым синтезом однородного многообразия, прибегая при этом к созерцанию времени. Она конструирует, говорит Кант, чистое количество - число. Кант, как видим, рассматривает число как величину, т.е. количество, - подход, характерный для математики нового времени в отличие от древнегреческой. Кантовское понимание математики отличается от лейбницева ее понимания. Последний даже геометрию хотел бы обосновать с помощью одних лишь понятий, считая, что всякая конструкция уступает логическим средствам по своей строгости и чистоте, ибо она прибегает к воображению. Кант же не только геометрию, но даже и арифметику рассматривает как науку, в основе которой лежит воображение (чистое созерцание). Алгебра, по Канту, тоже конструирует свой предмет, но не так, как геометрия, а с помощью символов. При таком способе конструирования "понятия, в особенности понятия об отношении между величинами, выражены в созерцании знаками, и, таким образом... все выводы гарантированы от ошибок тем, что каждый из них показан наглядно".
Достоверность математического знания, по Канту, гарантирована именно тем, что в основе математики лежит конструкция. Уважение к математике как самой надежной из наук составляет отличительную особенность XVII и XVIII вв., и Кант здесь верен своему времени.
Однако математика, говорит Кант, не всегда была наукой, какой мы ее видим сегодня. Нужна была настоящая революция в способе мышления, чтобы перейти к конструированию математических понятий. "С самых ранних времен, до которых простирается история человеческого разума, математика пошла верным путем науки у достойных удивления древних греков. Однако не следует думать, что математика так же легко нашла... этот царский путь, как логика... Наоборот, я полагаю, что она долго действовала ощупью... и перемена, равносильная революции, произошла в математике благодаря чьей-то счастливой догадке. Для нас не сохранилась история этой революции в способе мышления, гораздо более важной, чем открытие пути вокруг знаменитого мыса... Свет открылся тому, кто впервые доказал теорему о равнобедренном треугольнике... Он понял, что его задача состоит не в исследовании того, что он усматривал в фигуре или в одном лишь понятии, как бы прочитывая в ней ее свойства, а в том, чтобы создать фигуру посредством того, что он сам a priori сообразно понятиям вложил в нее и показал (путем построения). Он понял, что иметь о чем-то верное априорное знание он может лишь в том случае, если приписывает вещи только то, что необходимо следует из вложенного в нее им самим сообразно его понятию".
Математическое естествознание, по убеждению Канта, конструирует свой предмет, подобно математике. Однако естествознание встало на этот путь много позже, чем это сделала геометрия и арифметика. И тут тоже понадобилась целая революция, которую Кант связывает с деятельностью Галилея, Торричелли и других ученых XVII в. "Ясность для всех естествоиспытателей возникла тогда, когда Галилей стал скатывать с наклонной плоскости шары с им самим избранной тяжестью, когда Торричелли заставил воздух поддерживать вес, который, как он заранее предвидел, был равен весу известного ему столба воды, или когда Шталь в еще более позднее время превращал металлы в известь и известь в металлы..."