Отсюда видно, что сам Галилей не пришел к определенному и однозначному решению этого вопроса. В этом пункте нельзя не согласиться с выводом С. Я. Лурье, подробно изучавшего диалог Кавальери и Галилея: "...Галилей вообще не выставил никакой связной математической теории неделимых: стоя на атомистической точке зрения (непрерывное состоит из неделимых, линия состоит из точек), он в то же время видел логические несообразности, к которым приводила эта теория; компромисс Кавальери его не удовлетворял, он не хотел понять Кавальери, чувствовал, что математический атомизм необходим для дальнейшего прогресса математики, но не знал, как сделать его теоретически приемлемым".
Однако с помощью этого самого противоречивого понятия "неделимого", или "бесконечно малого", Галилей вводит важную категорию механики - "мгновенную скорость", отменяя тем самым принципы аристотелевской теории движения. При обсуждении вопроса о бесконечной медленности, представляющей собой опять-таки совпадение противоположностей - покоя и движения, аристотелик Симпличио возражает против введения этого понятия, указывая на грозящий здесь парадокс Зенона: "Но если степени все большей и большей медленности бесчисленны, то они никогда не могут быть все исчерпаны. Таким образом, подымающийся камень никогда не пришел бы в состояние покоя, но пребывал бы в бесконечном, постоянно замедляющемся движении, чего, однако, в действительности никогда не бывает". На это Галилей - Сальвиати дает ответ, формулируя ключевое понятие своей динамики - понятие мгновенной скорости: "Это случилось бы, синьор Симпличио, если бы тело двигалось с каждой степенью скорости некоторое определенное время; но оно только проходит через эти степени, не задерживаясь больше, чем на мгновение; а так как в каждом, даже в самом малом промежутке времени содержится бесконечное множество мгновений, то их число является достаточным для соответствия бесконечному множеству уменьшающихся степеней скорости". Галилей здесь опять-таки прибегает к понятию суммы бесконечно большого числа бесконечно малых отрезков времени, которым соответствует сумма бесконечно большого числа "мгновенных скоростей". Но что же такое "мгновенная скорость"? Коль скоро мгновение - это бесконечно малая "доля" времени, то, стало быть, само мгновение - это уже не время; мгновение - это не конечный отрезок времени, каким бы малым он ни был; это нечто среднее между вневременностью и временем, точно так же, как бесконечно малый отрезок пространства не есть ни математическая точка, ни как угодно малый отрезок пространства. "Мгновенная скорость" - это уже не скорость в собственном смысле слова, ибо всякая скорость предполагает движение, а движение может происходить только во времени. Значит, мгновенная скорость - это нечто вроде неподвижного начала движения. По Галилею, всякая скорость складывается из бесконечной суммы мгновенных скоростей, и это обращение к бесконечной сумме представляет собой как бы магическое заклинание, с помощью которого совершается прыжок от вневременных мгновений к времени, от внепространственных неделимых к пространству, от "неподвижных составляющих" движения к самому движению - одним словом, "переход в другой род". Средством этого перехода оказывается дифференциал, ибо именно дифференциалом и является "мгновенная скорость" у Галилея.
С помощью понятия "мгновенной скорости" Галилей решает проблему континуума. Средством решения, как видим, и здесь оказывается обращение к парадоксу, которое - заметим - Галилей, хотя и не без колебаний, позволяет себе, но не терпит у других, например у своего ученика Кавальери. Через понятие бесконечно малого, которое, если говорить строго, не есть ни реальность математическая (по крайней мере в смысле традиционной античной математики), ни реальность физическая, Галилей и осуществляет построение физики на основе математики. С какими противоречиями он при этом постоянно сталкивается, мы уже видели. Именно потому, что в понятии бесконечно малого с самого начала заложено противоречие, это противоречие с неизбежностью воспроизводится на каждом следующем этапе развития галилеевской мысли. Этим объясняется, почему Декарт не мог принять многих утверждений Галилея, в частности его тезиса о переходе падающего тела через все степени медленности. В 1639 г. в письме к Мерсенну Декарт замечает: "Следует знать, что бы ни говорили против этого Галилей и некоторые другие, что тела, начинающие падать или двигаться ...вовсе не проходят через все степени медленности, а имеют с первого момента определенную скорость, которая затем значительно возрастает".
Лейбниц высказывает в адрес Галилея упрек еще более серьезный, имея в виду уже не частный вопрос: он считает, что Галилей не развязал узел парадоксов континуума, а разрубил его. Этот упрек, несомненно, справедлив. Сам Лейбниц считал проблему континуума главной в натурфилософии и посвятил ее решению не меньше сил, чем в свое время Аристотель.
Глава 3
Рационализм Рене Декарта
1. Очевидность как критерий истины. "Cogito ergo sum"