Читаем История новоевропейской философии в её связи с наукой полностью

Как видим, номиналистическое истолкование интеллекта играет в философии Декарта очень большую роль. Рассматривая понятия математики и ее определения как абстракции ума, Декарт на первый взгляд оказывается близким к Аристотелю. Однако Аристотель на этом основании отказывал математике в праве быть фундаментом физики, считая, что математика в силу абстрактной односторонности своих понятий не может ухватить сущность природной реальности. Напротив, Декарт видит в математике, понятой столь конвенционалистски, теоретическую и методологическую базу для всех наук о природе. В этом - специфика понимания как математической науки, так и самой природы в XVII в. в отличие от их понимания в античности и в средние века.

Как справедливо указывает немецкий историк философии К. Фолькман-Шлюк, "в мышлении греков, которое в определенной мере продолжается и в средневековой философии, ставился метафизический вопрос о способе бытия числа. Вопрос этот гласил: являются ли числа, единства из единиц, самостоятельным сущим наряду со считаемыми вещами и помимо них или же они суть сами вещи, взятые с точки зрения их единства, или же, наконец, их бытие придается им только считающим интеллектом? Этот вопрос уже нельзя поставить по отношению к новым числам, ибо они функционируют только как равенства величин и получают свое значение только в ходе расчета. Поэтому допускаются и отрицательные числа, так как символические числа имеют смысл только как равенства величин". Действительно, у Декарта мы не находим специального обсуждения вопроса о природе числа; у него число не отличается принципиально от величины, как это мы видели в античной математике: только благодаря устранению этого различия число может функционировать "только как равенство величин", говоря словами Фолькмана-Шлюка.

"Само понятие о числе, - пишет в этой связи А.П. Юшкевич, - под которым ранее понималось обычно положительное рациональное, Декарт - опять-таки, если и не явно, то фактически - распространил на всю область вещественных чисел: без этого немыслимо было аналитическое изучение непрерывных пространственных фигур, их взаимосвязей и движения. Тем самым Декарт порывал с восходившей к античности традицией, считавшей разнородными объекты арифметики и геометрии, дискретное число и непрерывную протяженную величину и придерживавшейся того правила, что нельзя переносить доказательства из одного рода в другой..."

В аналитической геометрии Декарта существенно преобразуются прежняя арифметика и геометрия: геометрические образования сами получают здесь характер алгебраических чисел и, напротив, числа могут выступать в роли величин. Непрерывное (величина, с которой раньше имела дело геометрия) и дискретное (число, предмет арифметики) утрачивают теперь свою специфику; только в таком виде они превращаются в универсальную математику, выполняющую роль метода при создании новой науки. "Для традиционной математики, - пишет Э. Кассирер, - характерно обособление и разделение проблем; Декарт стремится преодолеть это обособление".

Созданную им математику Декарт называет универсальной именно потому, что она абстрагируется от всех тех содержательных определений, которые лежали в основе античной и во многом еще и средневековой математики и составляли специфику отдельных ее ветвей - арифметики, геометрии, астрономии и других. Эта новая математика полностью соответствует той задаче, которую ставит Декарт перед наукой вообще: она есть инструмент для научного конструирования мира, средство для осуществления той организованной научной деятельности, которая, по мысли Декарта, должна встать на место отдельных случайных, спорадических открытий и прозрений.

Теперь нам будет понятна основная тенденция философии нового времени, которую предельно ярко выразил и Декарт: перенесение центра тяжести философского учения с проблем онтологических на гносеологические. В самом деле, коль скоро речь идет о том, чтобы из единого принципа с помощью определенного метода построить новый мир, то очевидно, что главная задача состоит в рассмотрении этого единого принципа, правил метода, т.е. способа построения мира, а также приведения всех возможных аргументов в пользу правомерности и исполнимости задуманного предприятия. Этими вопросами и занимается Декарт в "Рассуждении о методе", в "Правилах для руководства ума", в "Метафизических размышлениях" и "Началах философии".

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже