Читаем История новоевропейской философии в её связи с наукой полностью

Механические средства измерения уравниваются в правах с математическим доказательством. Тут как раз и исчезает та непереходимая грань, что существовала на протяжении многих столетий между механикой как искусством (техникой) и математикой как наукой. Попытки сделать эту грань не такой непреодолимой, как в античной науке, предпринимались уже в средние века.

Кузанец же своим учением о тождестве единого и бесконечного, о бесконечном как мере самым решительным образом переступает эту грань. Именно в направлении, указанном Кузанцем, и пошел в дальнейшем пересмотр фундаментальных предпосылок античной и средневековой математики, что и привело к созданию исчисления бесконечно малых.

Измерение весов с целью определять соотношение объемов тел Кузанец настоятельно рекомендует геометрам, показывая, сколь универсальным может быть этот прием. "...Если возьмешь две совершенно равные пластинки и одну согнешь до окружности, сделав из нее цилиндрический сосуд, а другую согнешь в виде четырехугольника, сделав кубический сосуд, и наполнишь эти сосуды водой, то по различию веса узнаешь различие емкости круга и квадрата одинаковой периферии. Точно так же, имея много одинаковых пластин, сможешь исследовать различную емкость треугольника, пятиугольника, шестиугольника и так далее. Сходным образом путем взвешивания сможешь найти способ установления емкости сосудов любой формы. То же самое - касательно инструментов измерения и взвешивания: как надо делать весы, как один фунт поднимает тысячу фунтов благодаря разнице расстояния от центра весов и разной изогнутости более прямого или более кривого (коромысла), наконец, как надо делать все тонкие приспособления на кораблях и машинах. Словом, эти опыты с весами для всей геометрии я считаю очень полезными".

Характерное для греческой (а затем и для средневековой) науки отделение математики как строгого знания от всех видов искусства (техники) базировалось на том, что математика не имеет дела с опытной, эмпирической реальностью - в этом сходились между собой и платоники, и перипатетики, несмотря на разные способы обоснования ими математического знания. Когда эта предпосылка разрушается, математика не столь уж принципиально отличается от логистики, от техники исчисления. Не случайно Кузанец не придает столь важного значения различию рациональных и иррациональных отношений - различию, без которого не было бы античной математики. В то же время это различие никогда не было существенным для логистики, имевшей дело всегда с приближенными значениями. Сближение математики с логистикой было той предпосылкой, без которой первоначально не могло бы возникнуть не только исчисление бесконечно малых, но и механика как математическая наука, ибо тут по сути было как бы смягчено принципиальное различие между математическим объектом и реальным физическим объектом, взятым в его идеализированной форме. Так, например, Галилей, как мы увидим ниже, не видит принципиального различия между геометрической плоскостью и абсолютно гладкой поверхностью физического тела - переход от математически идеального к физической идеализации, какого еще не было в античной и средневековой науке.

Таким образом, своим учением о приблизительности всякого знания о мире Кузанец прокладывает путь важнейшим допущениям математики и механики XVII в. не в меньшей степени, чем своей теорией "предельных переходов".

Надо отметить также, что Николай Кузанский применяет принцип совпадения противоположностей не только к области математики и космологии, но и применительно к проблеме движения, - он хочет пересмотреть традиционное представление о противоположности движения и покоя. В сочинении "Игра в шар" Кузанец показывает, что покой можно рассматривать как движение с бесконечно большой скоростью. Чтобы сделать свою мысль наглядной, он приводит в качестве примера вращение юлы. Чем больше скорость вращения, говорит Кузанец, тем непрерывнее становится движение юлы; когда же юла вращается с самой большой из возможных для нее скоростей, то создается впечатление, что она неподвижна. Если допустить мысленно, что скорость вращения этой детской игрушки возрастает до бесконечности, то каждая точка ее периферии, подчеркивает Кузанец, в каждый момент времени присутствует "везде", и притом "одновременно", потому что при бесконечной скорости движения один "момент" уже не отстоит от другого ни на какой временной промежуток.

Однако если говорить строго, то при допущении бесконечной скорости больше невозможно говорить об отдельных моментах времени, так же как и об отдельных фиксированных точках бесконечно большого круга, - все эти различия исчезают, коль скоро делается допущение об актуально бесконечно большой скорости. Здесь снова парадокс зеноновского типа, разрушающий самые возможности установления каких бы то ни было пропорциональных зависимостей.

Обратим внимание и еще на одну деталь в рассуждении Николая.

Перейти на страницу:

Похожие книги

Этика
Этика

«Этика» представляет собой базовый учебник для высших учебных заведений. Структура и подбор тем учебника позволяют преподавателю моделировать общие и специальные курсы по этике (истории этики и моральных учений, моральной философии, нормативной и прикладной этике) сообразно объему учебного времени, профилю учебного заведения и степени подготовленности студентов.Благодаря характеру предлагаемого материала, доступности изложения и прозрачности языка учебник может быть интересен в качестве «книги для чтения» для широкого читателя.Рекомендован Министерством образования РФ в качестве учебника для студентов высших учебных заведений.

Абдусалам Абдулкеримович Гусейнов , Абдусалам Гусейнов , Бенедикт Барух Спиноза , Бенедикт Спиноза , Константин Станиславский , Рубен Грантович Апресян

Философия / Прочее / Учебники и пособия / Учебники / Прочая документальная литература / Зарубежная классика / Образование и наука / Словари и Энциклопедии
История политических учений. Первая часть. Древний мир и Средние века
История политических учений. Первая часть. Древний мир и Средние века

  Бори́с Никола́евич Чиче́рин (26 мая(7 июня) 1828, село Караул, Кирсановский уезд Тамбовская губерния — 3 (17) февраля1904) — русский правовед, философ, историк и публицист. Почётный член Петербургской Академии наук (1893). Гегельянец. Дядя будущего наркома иностранных дел РСФСР и СССР Г. В. Чичерина.   Книга представляет собой первое с начала ХХ века переиздание классического труда Б. Н. Чичерина, посвященного детальному анализу развития политической мысли в Европе от античности до середины XIX века. Обладая уникальными знаниями в области истории философии и истории общественнополитических идей, Чичерин дает детальную картину интеллектуального развития европейской цивилизации. Его изложение охватывает не только собственно политические учения, но и весь спектр связанных с ними философских и общественных концепций. Книга не утратила свое значение и в наши дни; она является прекрасным пособием для изучающих историю общественнополитической мысли Западной Европы, а также для развития современных представлений об обществе..  Первый том настоящего издания охватывает развитие политической мысли от античности до XVII века. Особенно большое внимание уделяется анализу философских и политических воззрений Платона и Аристотеля; разъясняется содержание споров средневековых теоретиков о происхождении и сущности государственной власти, а также об отношениях между светской властью монархов и духовной властью церкви; подробно рассматривается процесс формирования чисто светских представлений о природе государства в эпоху Возрождения и в XVII веке.

Борис Николаевич Чичерин

История / Политика / Философия / Образование и наука