Предложенные меры во много раз уменьшили опасность возникновения флаттера. Еще один барьер на пути развития авиации был преодолен. Но об окончательном решении проблемы говорить было еще рано. Как и в случае со штопором, вероятность появления флаттера сильно зависит от компоновки летательного аппарата, а в самолетостроении она, как известно, постоянно меняется.
Увеличение нагрузки на крыло и рост высоты полета вызвали определенные сложности в обеспечении устойчивости и управляемости самолетов. Как известно, запас продольной статической устойчивости по перегрузке уменьшается по мере возрастания m/S и разряженности воздуха [62, с. 424-425]. Кроме того, замедляется затухание динамических колебаний, т.е. снижается динамическая устойчивость самолета. К этому можно еще добавить тенденцию к концевому срыву на крыле на большой высоте, т.к. по мере уменьшения плотности воздуха приходится увеличивать угол атаки. В результате самолет становится более "строгим" в управлении, требует от летчика повышенного внимания и мастерства.
Преодолению указанных сложностей способствовали математические и экспериментальные исследования устойчивости и управляемости летательных аппаратов [65, с. 200-220]. Научные рекомендации позволили более обоснованно делать выбор центровки самолета и определение площади аэродинамических рулей (в 20-е годы конструкторы подходили к решению этих вопросов эмпирически или, в лучшем случае, на основе статистических сведений). На некоторых самолетах для уменьшения опасности концевого срыва наряду с элеронами на концах крыла стали устанавливать интерцепторы.
Таким образом, в 30-е годы развитие конструкции самолетов происходило в тесном взаимодействии с наукой. Без помощи со стороны ученых достигнутый к концу этого десятилетия технический прогресс был бы невозможен.
Подводя общие итоги развития самолетов в предвоенные годы, следует отмстить следующее:
1. Благодаря совместным усилиям конструкторов и ученых продолжалось совершенствование летно-технических характеристик летательных аппаратов, причем по целому ряду параметров темп их развития был намного выше, чем в 20-е годы. Этому способствовала техническая революция в самолетостроении на рубеже 20-х – 30-х годов, основные направления которой были описаны в предыдущей главе.
2. Главными движущими силами развития авиации являлись: в начале 30-х годов – конкурентная борьба авиакомпаний за господство на воздушных линиях; во второй половине этого десятилетия – резкое обострение политической ситуации из-за реваншистских планов А. Гитлера и Б. Муссолини в Европе и японских милитаристов на Дальнем Востоке и связанная с надвигающейся войной гонка вооружений. За период с 1933 г. по 1938 г. суммы, выделяемые на развитие военной авиации в мире возросли в 8 раз, а на нужды гражданской авиации – только вдвое (рис. 3.67) [66].
3. Если в 20-е годы основными техническими характеристиками считались грузоподъемность и дальность, то в последующее десятилетие главные усилия были направлены на повышение скорости полета. Как было установлено на опыте первые серийных скоростных самолетов, появившихся в начале 30-х годов, скорость является мощным фактором развития транспортной и боевой эффективности летательных аппаратов.
4. Задача улучшения скоростных качеств привела к коренным преобразованиям в конструкции самолетов. Наиболее глубокими они были в первой половине 30-х годов. Именно в этот период в практику самолетостроения вошли: схема моноплан с гладким свободнонесушим крылом, убираемое шасси, посадочная механизация крыла, капоты, винты изменяемого шага. Во второй половине 30-х годов совершенствование форм самолетов происходило за счет более мелких аэродинамических улучшений: капотирования радиаторов, применения потайной клепки и т.д.
ГЛАВА 4. САМОЛЕТЫ В ГОДЫ ВТОРОЙ МИРОВОЙ ВОЙНЫ.
Развитие авиации в мирное время продолжалось только два десятилетия. В сентябре 1939 г. правительство Германии вновь развязало мировую воину, самую кровопролитную и страшную в истории человечества. И вновь, как и четверть века назад, авиация стала оружием массовой агрессии.