Читаем История самолетов 1919 – 1945 полностью

В 30-е годы увеличение скорости летательных аппаратов осуществлялось не только повышением мощности, но и за счет уменьшения удельного веса мотора, перехода к большим нагрузкам на крыло, улучшения внешних форм самолета и КПД винта, увеличения высоты полета. Однако к середине 40-х голов эти возможности были практически исчерпаны. Более того, с ростом скорости самолетов начало сказываться влияние сжимаемости воздуха, что привело к ухудшению некоторых аэродинамических параметров. Так, было замечено снижение эффективности пропеллера; с ростом скорости и высоты полета и увеличением размеров и числа оборотов воздушного винта на концах лопастей стали возникать скачки уплотнения. Попытки избежать этого за счет увеличения числа лопастей с одновременным уменьшением их длины, изменения формы крутки и профиля лопасти давали лишь ограниченный эффект (рис. 4.63) [57, с. 12].

Иногда влияние сжимаемости проявлялось и на самом самолете, обычно при пикировании на больших высотах, где волновой кризис наступает примерно на 150 км/ч раньше, чем при полете у земли. Из-за возникновения скачков уплотнения на крыле начиналась вибрация, самолет затягивало в пикирование. Чаше всего это случалось на американских Р-38 и Р-47. имевших Мкрит=0,7 (на них даже пришлось установить специальные закрылки для вывода из пикирования), реже – на Р-51 с ламинарным профилем (Мкрит=0.,8), еще реже – на "Спитфайре", отличавшимся тонким крыльевым профилем (Мкрит=0,9) [13,с.32; 17, с. 143]. На советских истребителях, действовавших на небольших высотах, случаев влияния сжимаемости не отмечалось.

Итак, становилось ясно, что, несмотря на все ухищрения (введение форсированных режимов работы мотора, применение нагнетателей, использование энергии выхлопа с помощью специальных реактивных насадок), возможности двигателя внутреннего сгорания с воздушным винтом исчерпаны. Для освоения новых диапазонов скорости и высоты полета требовался переход к другому типу силовой установки – реактивному двигателю.

Паллиативной мерой явилось создание двигателей комбинированного типа, с использованием реактивной тяги в качестве дополнительного ускорителя в полете. Для этого под фюзеляжем или на крыльях устанавливали небольшие реактивные двигатели типа ПВРД или ЖРД. Наибольший размах эти работы имели в СССР, где к концу войны из-за меньшей мощности поршневых двигателей наметилось отставание военных самолетов по высоте и скорости от лучших образцов зарубежной авиационной техники. Впервые возможность применения ПВРД на истребителе испытали в 1940 г. на самолетах И-15бис и И-153, расположив под крыльями два таких двигателя. Позднее в качестве эксперимента прямоточные воздушно-реактивные двигатели ставили на истребителях ЛаГГ-3 и Як-7Б.


Рис. 4.63. Изменение КПД винта на околозвуковых скорости


Включение ПВРД давало прирост скорости на 30-50 км/ч, однако из-за большого аэродинамического сопротивления этих двигателей максимальная скорость истребителя с неработающими ПВРД была заметно меньше, чем у такого же самолета без вспомогательных силовых установок. Кроме того, "прямоточки" расходовали массу горючего (60-70 кг/мин). Поэтому вскоре от такого способа отказались.

Установка ЖРД в хвостовой части фюзеляжа не вела к увеличению Схо. Кроме того, при испытаниях в 1943-1945 гг. на бомбардировщике Пе-2 и истребителях Як-3, Jla-7 и Су-7 было установлено, что использование ЖРД-ускорителя (РД-1 с тягой 300 кг) дает более заметый прирост скорости: от 70 до 180 км/ч. Но недостаточная надежность работы жидкостно-ракетного ускорителя и необходимость иметь на борту запас едкой азотной кислоты, используемой в качестве окислителя, сильно затрудняли эксплуатацию. К тому же РД-1 оказался сшс более "прожорливым", чем ПВРД-ускорители: за одну минуту он сжигал 90 кг топлива. Поэтому и этот метод увеличения максимальной скорости полета не получил распространения в ВВС [18; 44].

Другим типом комбинированного воздушно-реактивного двигателя была мото- компрессорная силовая установка. Первый самолет этого типа построили в Италии на фирме Капрони в августе 1940 г. (рис. 4.64). Силовая установка состояла из поршневого двигателя "Изотта-Фраскини" мощностью 900 л.с., который приводил в действие трехступенчатый компрессор расположенного сзади воздушно-реактивного двигателя. Такая конструкция позволяла обойтись без турбины, являвшейся камнем преткновения на пути создания ТРД из-за того, что материал лопаток не выдерживал сверхвысоких температур за камерой сгорания. Однако полетные испытания показали бесперспективность этой силовой установки – из-за ее низкого КПД максимальная скорость самолета составила всего 330 км/ч [39, с. 72].


Рис.4.64. Экспериментальный самолет Капрони-Кампиии


Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки
Физика в бою
Физика в бою

В книге коллектива авторов в живой, популярной форме рассказывается о том, какую важную роль играет физика в современном военном деле, как используются ее достижения для дальнейшего развития ракетно-ядерного оружия, повышения боевых возможностей сухопутных войск, авиации и военно-морского флота Авторы показывают, что без знания основ физики сейчас невозможно плодотворно изучать и квалифицированно использовать боевую технику и вооружение, видеть, в каком направлении идет их прогресс. Встречаясь с известными еще со школьной скамьи физическими законами, читатель узнает, каких интересных и зачастую необычных результатов добиваются ученые и инженеры, используя эти законы для решения сложных проблем современного боя Читатель познакомится с новейшими военно-техническими достижениями, родившимися на основе использования успехов физики, ее тесного контакта с техническими науками.Редактор-составитель инженер-подполковник Жуков В.Н.

авторов Коллектив , Владимир Николаевич Жуков

Физика / Технические науки / Образование и наука