Читаем История самолетов 1919 – 1945 полностью

Первым за воплощение идеи самолета типа "летающее крыло" взялся советский авиаконструктор и планерист Б. И. Черановский. В 1926 г. он построил легкий экспериментальный самолет-"бесхвостку" БИЧ-3 с крылом параболической формы (рис. 1.87). Благодаря большой относительной толщине профиля и значительной длине корневой хорды, двигатель и кабина летчика почти не выступали за обводы крыла. Чтобы максимально уменьшить аэродинамическое сопротивление, было применено одноколесное шасси. Устойчивость и управление должны были обеспечиваться элевонами на задней кромке крыла и расположенным за кабиной килем с рулем направления. По отзывам летчика Б. Н. Кудрина, испытывавшего этот необычный самолет, БИЧ-3 хорошо слушался рулей, обладал удовлетворительной устойчивостью [58]. Однако ненадежная работа мотора и трудности при разбеге из-за одноколесного шасси не позволили закончить испытания.

После успешных полетов экспериментального БИЧ-7А с более мощным двигателем и обычным двухколесным шасси (1932 г.) Черановский решил применить схему летающее крыло" при создании пассажирского самолета. БИЧ-14 имел полуутопленную в крыле пятиместную закрытую кабину, два двигателя по 100 л.с. были расположены на передней кромке крыла. В отличие от первых экспериментальных образцов, этот самолет оказался неустойчивым и плохо управляемым, что не позволило применить его для пассажирских перевозок [56, с. 53-54]. Указанные недостатки во многом были вызваны тем, что, в отличие от БИЧ-3 и БИЧ-7А, на БИЧ-14 вертикальное оперение стояло между моторами и не обдуваюсь струей от винта. Из-за небольшого расстояния от центра тяжести самолета его эффективность была недостаточной.

Приверженцем идеи "летающего крыла" был также немецкий авиаконструктор У. Липпиш. В 1931 г. он построил экспериментальный бесхвостый самолет "Дельта-1" с крылом большой относительной толщины, со стреловидной передней и прямой задней кромкой. Самолет имел расположенный за кабиной двигатель с толкающим репеллером, вертикальные кили были установлены на концах крыла (рис. 1.88). Продольной устойчивости должен был способствовать, так называемый, самоустойчивый профиль крыла: благодаря отогнутой вверх хвостовой части профиля центр давления смешатся таким образом, что при увеличении угла атаки возникал пикируюший момент, стремящийся возвратить самолет в исходное положение. На задней кромке размешались элероны и рули высоты.


Рис.1.87. БИЧ 3


На "Дельта-1" был осуществлен успешный демонстрационный перелет по Германии, который породил интерес к новой схеме у конструкторов многих стран.

Несмотря на то, что некоторые из первых экспериментальных аппаратов схемы "летающее крыло" продемонстрировали при испытаниях удовлетворительные летные качества, заметных преимуществ перед обычными самолетами они не проявили. При одинаковых весе и мощности максимальная скорость "бесхвосток была не больше, чем у самолетов классической схемы. Не оказалось преимуществ и в отношении дальности и грузоподъемности. Это свидетельствует о том. что аэродинамическое совершенство "летающих крыльев" 20-х – начала 30-х годов было не выше, чем у обычных самолетов. Небольшие размеры самолетов заставляли конструкторов увеличивать толщину крыла, чтобы разместить внутри пилота и агрегаты, а это вело к росту профильного сопротивления. Кроме того, для "бесхвосток" было характерно крыло со стреловидностью по передней кромке и большой корневой хордой, имеющее сравнительно небольшое удлинение.


Рис. 1.88. Дельта -Г


Таблица 1.11. Характеристики первых самолетов типа "летающее крыло".



В отличие от других типов летательных аппаратов – дирижабля, вертолета, для взлета самолета требуется разбег по земле. Приземление также происходит с пробегом. В зависимости от веса и нагрузки на крыло взлетно-посадочная дистанция самолетов составляла от нескольких десятков до нескольких сотен метров. Если в случае вынужденной посадки летчику не удавалось найти подходящей площадки на земле, приземление заканчивалось аварией. Немалые трудности представлял и взлет после вынужденной посадки, даже если последняя прошла успешно.

Указанные особенности обусловили работы по созданию самолетов, которые могли бы взлетать и садиться без разбега. Первые проекты самолетов вертикального взлета и посадки (СВВП) относятся к XIX веку [14. с. 58]. В 20-е – начале 30-х годов появились новые проекты: с поворотными винтами (В. Маргулис. Франция), с поворотным крылом, с останавливаемым и превращаемым в крыло несущим винтом (Г. Геррик, США). В СССР в 30-е годы изучением возможности создания самолета вертикального взлета и посадки занимался Б. Н. Юрьев. В отличие от зарубежных изобретателей. Юрьев выступал за постройку СВВП с вертикальным положением фюзеляжа при взлете [59, с. 8-9].

Воплощению всех этих замыслов препятствовала недостаточная энерговооруженность самолетов: для вертикального взлета требовалась удельная нагрузка на мощность 1.4-1.7 кг/л.с. [59, с. 10]. что примерно вдвое больше реально достижимых в рассматриваемый период величин.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки
Физика в бою
Физика в бою

В книге коллектива авторов в живой, популярной форме рассказывается о том, какую важную роль играет физика в современном военном деле, как используются ее достижения для дальнейшего развития ракетно-ядерного оружия, повышения боевых возможностей сухопутных войск, авиации и военно-морского флота Авторы показывают, что без знания основ физики сейчас невозможно плодотворно изучать и квалифицированно использовать боевую технику и вооружение, видеть, в каком направлении идет их прогресс. Встречаясь с известными еще со школьной скамьи физическими законами, читатель узнает, каких интересных и зачастую необычных результатов добиваются ученые и инженеры, используя эти законы для решения сложных проблем современного боя Читатель познакомится с новейшими военно-техническими достижениями, родившимися на основе использования успехов физики, ее тесного контакта с техническими науками.Редактор-составитель инженер-подполковник Жуков В.Н.

авторов Коллектив , Владимир Николаевич Жуков

Физика / Технические науки / Образование и наука