Читаем История свечи полностью

В конце концов и горение свечи тоже пример пространственного распространения пламени сверху вниз. Все эти особенности горения тесно связаны с законами протекания химических реакций. Поэтому мы с них и начнем.

II

Все многообразие окружающих нас тел обусловлено существованием всего ста с небольшим разных типов атомов. Их различные комбинации образуют и очень простые молекулы (кислород, вода, углекислый газ), и молекулы-гиганты, построенные из очень большого числа атомов (например, белки или высокомолекулярные соединения-полимеры). Слово "гиганты" в отношении молекул следовало бы, конечно, взять в кавычки: ведь по сравнению с окружающими нас предметами молекулы малы.

Не утомляя читателя числами с огромным количеством нулей после запятой (от них суть дела не намного становится понятнее), приведем простое сравнение. Предположим, мы увеличиваем в одинаковое число раз молекулу воды и теннисный мяч. Если при этом молекула станет размером с мяч, то последний будет сравним с земным шаром.

Молекулы довольно неохотно поддаются расщеплению на атомы. Возьмем, к иримеру, обыкновенный лед. Его молекула содержит два атома водорода и один атом кислорода. Нагревая лед, его можно расплавить и превратить в воду. Вода будет состоять из тех же молекул. При кипячении воды она испаряется, но и пары воды-это те же самые молекулы. Лишь нагревая водяные пары до очень высокой температуры (несколько тысяч градусов), можно разрушить молекулы и получить отдельные атомй водорода и кислорода.

При дальнейшем повышении температуры и атомы разлагаются на их составные части -положительные ядра и отрицательные электроны. Таким образом, атомы в молекуле связаны между собой довольно мощными силами.

Голландский физик Ван-дер-Ваальс, исследуя поведение плотных газов при различных температурах и давлениях, установил, что для объяснения их свойств необходимо предположить существование сил притяжения между молекулами на больших расстояниях и отталкивание на малых.

Причину возникновения межатомных и межмолекулярных сил можно понять лишь на основе квантовой механики - науки, описывающей поведение микрочастиц. Не останавливаясь на подробностях, укажем лишь, что эти силы имеют электрическую природу. Однако для расчета межатомных взаимодействий недостаточно одного известного закона Кулона. Квантовый характер движения электронов приводит к специфическим особенностям взаимодействия атомов по сравнению со взаимодействием обычных классических заряженных частиц.

Если на больших расстояниях атомы притягиваются, а на малых отталкиваются, то должно быть положение, где сила взаимодействия между атомами равна нулю (силы притяжения при уменьшении расстояния в этой точке сменяются силами отталкивания). Это так называемое положение равновесия. Поместив два атома на таком расстоянии, мы получим устойчивую молекулу. Действительно, при малейшем изменении расстояния между атомами возникают силы, стремящиеся вернуть эти атомы в исходное состояние (если расстояние увеличилось, то появляются силы притяжения, которые вызывают сближение атомов; при случайном уменьшении расстояния возникнут силы отталкивания).

В физике обычно говорят не на языке сил, а на языке энергий. Это оказывается во многих случаях удобнее. Например, при изучении движения тел в поле тяжести Земли вместо закона тяготения Ньютона часто пользуются понятием потенциальной энергии. Величина потенциальной энергии тела в поле Земли зависит от высоты, на которую оно поднято. Чем больше расстояния от Земли, тем большую работу совершает тело при падении и тем, следовательно, больше его потенциальная энергия. На поверхности Земли потенциальная энергия меньше всего.

Рис. 1

Те же рассуждения можно применить и к молекулам. Раздвинутые на большое расстояние атомы обладают потенциальной энергией, так как они притягиваются. Точно так же из-за сил отталкивания имеется потенциальная энергия и у атомов, которые сблизились на расстояние меньше равновесного. Минимальная потенциальная энергия - у атомов, находящихся в положении равновесия. На рис. 1 изображена типичная кривая, показывающая, как изменяется потенциальная энергия в зависимости от расстояния между атомами. Точка rо отвечает положению равновесия атомов. Видно, что при отклонении от этого положения энергия быстро растет. Если сначала атомы находились в точке rо, то для удаления их друг от друга на большое расстояние нужно затратить энергию, равную D. При этом из молекулы мы получим два изолированных атома. D - энергия связи атомов в молекуле, или энергия связи молекулы.

Здесь уместно провести аналогию с механикой. Если некоторое тело, находящееся в поле тяжести, движется по поверхности, изображенной на рисунке, то его потенциальная энергия будет изменяться подобным же образом. Шарик всегда скатывается в углубление, и чтобы достать его оттуда, нужно затратить некоторую энергию, пропорциональную глубине ямы.

Перейти на страницу:

Похожие книги

О станках и калибрах
О станках и калибрах

Все машины — это детища машиностроительных заводов. На этих заводах работают металлообрабатывающие станки — те машины, с помощью которых изготовляются части — детали любых машин: паровозов, автомобилей и самолетов, тракторов и сельскохозяйственных комбайнов, турбин и двигателей внутреннего сгорания, всех рабочих машин, в том числе и самих металлообрабатывающих станков.С помощью станков, созданных советскими инженерами, наш народ сказочно увеличил количество машин на заводах и фабриках и неизмеримо поднял производительность труда в советской промышленности.В наши дни выдающиеся достижения советских станкостроителей служат прочной базой социалистического машиностроения, помогают советским людям в их победоносном шествии к коммунизму. Вот почему к станкостроению и металлообработке приковано особенно пристальное внимание всех советских людей.Рассказам о главных изобретениях и усовершенствованиях в развитии станкостроения и металлообработки и посвящена эта книга.

Зигмунд Наумович Перля

Детская образовательная литература / Технические науки / Книги Для Детей / Образование и наука