Когда астрофизики решили заняться поиском экзопланет, наблюдая за колебаниями звезд, они поняли: чтобы найти сравнимую с Юпитером планету, расположенную на расстоянии от своей звезды, сопоставимом с расстоянием от Юпитера до Солнца, им понадобится измерить доплеровские смещения с точностью, достаточной того, чтобы затем отследить изменения в относительной скорости изучаемого объекта, составляющие примерно 40 футов в секунду. В земных условиях это весьма немалая скорость (около 27 миль в час[53]
), но с точки зрения астрономии она не составляет даже одной миллионной доли скорости света, а также равняется примерно одной тысячной доле той скорости, с которой звезды, как правило, движутся в нашем направлении от нас. Таким образом, чтобы обнаружить вызванное изменением скорости источника излучения доплеровское смещение, чей размер составляет не более одной миллионной доли скорости света, астрофизикам нужно измерять разницу в длинах волн, то есть в палитре звездного света, составляющую одну часть на миллион.Такая точность дала научному миру не просто возможность обнаруживать планеты. Так как подобная схема обнаружения основана на анализе и выявлении цикличных повторений в изменении скорости движения звезды, продолжительность каждого из этих циклов напрямую отражает период обращения планеты, которая является причиной этих изменений. Если звезда танцует согласно определенным образом повторяющемуся циклу, значит, планета танцует с идентичным периодом кругового движения, только на гораздо более широкой орбите. Этот период обращения, в свою очередь, позволяет оценить расстояние от этой планеты до ее звезды. Исаак Ньютон давно доказал, что объект, вращающийся вокруг звезды, тем быстрее будет завершать одно полное вокруг нее обращение, чем ближе он к этой звезде расположен и тем медленнее, чем он дальше. Каждый период обращения соответствует конкретному значению величины среднего расстояния между звездой и объектом на ее орбите. Так, в Солнечной системе однолетний период обращения подразумевает, что такой объект находится на том же расстоянии от Солнца, что и Земля, а период обращения 12 лет означает, что этот объект находится на расстоянии в 5,2 раза больше расстояния от Солнца до Земли — как Юпитер, соответственно. Поэтому исследователи смогли объявить, что не только обнаружили планету как таковую, но и вычислили ее период обращения и то среднее расстояние, что отделяет ее от своей звезды.
Но о планете можно узнать еще больше. Двигаясь на определенном расстоянии от своей звезды, планета, точнее, ее гравитация притягивает к себе звезду с силой, которая зависит от ее массы. Более массивные планеты оказывают большее воздействие, из-за чего и звезда «танцует» быстрее. Вычислив расстояние от звезды до планеты, команда ученых смогла определить и
Надо признать, что вычисление массы планеты с помощью наблюдений за перемещениями ее звезды в определенной мере слагает с нас ответственность. Астрономы не могут знать наверняка, изучают ли они такую танцующую звезду с луча зрения, полностью совпадающего с плоскостью, в которой лежит орбита планеты, или с луча зрения выше плоскости орбиты (в таком случае им нужно измерять нулевую скорость звезды), с луча зрения, идущего и не вдоль плоскости, и не перпендикулярно ей (наверняка это почти всегда именно так). Плоскость, где лежит орбита интересующей нас планеты, которую та описывает вокруг звезды, накладывается на плоскость движения звезды в ответ на гравитационное воздействие планеты. Получается, что мы наблюдаем полные орбитальные скорости только в том случае, если наш луч зрения при взгляде на звезду полностью совпадает с плоскостью орбиты этой планеты вокруг своей звезды. Попробуем вообразить аналогичную ситуацию в более понятных декорациях: вы на бейсбольном матче и можете измерить скорость мяча, брошенного питчером, в тот момент, когда он летит прямо на вас или от вас, но не скорость, с которой такой мяч пересекает ваше поле зрения. Если вы приехали на поиски талантливых спортсменов, лучше всего садитесь сразу за основной базой, где стоит игрок с битой — на одной линии с траекторией полета бейсбольного мяча. Но если вы будете смотреть игру с первой или третьей базовой линии, тогда брошенный питчером мяч по большей части не полетит ни на вас, ни от вас и измеренная вами скорость движения мяча по вашему лучу зрения будет практически равна нулю.