Читаем История всего полностью

Литий, третий по простоте строения элемент во Вселенной, содержит в своем ядре три протона. Как водород и гелий, он образовался вскоре после Большого взрыва, но, в отличие от гелия, запасы которого с тех пор регулярно пополняются в последующих ядерных реакциях, литий разрушается

в результате ядерного синтеза, протекающего в звездах. По этой причине мы не рассчитываем когда-либо найти объекты регионы, в которых лития было бы больше, чем в среднем по Вселенной (0,0001 % от общего числа атомов, образованных в ее глубоком младенчестве). Наша модель предполагает, что образование элементов протекало лишь в первые полчаса существования Вселенной, и никому еще не удалось найти галактику, в которой лития было бы больше его максимального предельного значения. Такое сочетание предельных значений для лития и гелия ставит нас в рамки мощного двойного ограничения при проверке космологической теории Большого взрыва. Есть и другой подобный тест этой модели, который она всегда проходит с блестящими результатами: в нем сравнивают число ядер дейтерия, в каждом из которых содержатся один протон и один нейтрон, с количеством обычного водорода. В первые несколько минут синтеза были образованы оба этих типа ядра, но обычного водорода (с одним протоном) получилось в разы больше, чем дейтерия (где, помимо протона, есть еще и нейтрон).

Как и литий, следующие два элемента периодической таблицы — бериллий и бор (по четыре и пять протонов в ядре каждого соответственно) — в первую очередь обязаны своим происхождением термоядерному синтезу в ранней Вселенной и встречаются в ней в относительно скромных количествах. Из-за дефицита на Земле этих трех самых легких химических элементов после водорода и гелия случайный их прием внутрь — далеко не самая лучшая и даже опасная идея: ведь наша эволюция протекала, по сути, без их участия. Но, что удивительно, соответствующие дозы лития при этом способны приносить облегчение в борьбе с рядом умственных расстройств.

Начиная с углерода, элемента номер шесть, периодическая таблица расцветает пышным цветом. Количество молекул, в составе которых есть хотя бы один атом углерода (по шесть протонов в ядре каждого), превышает количество всех остальных, вместе взятых молекул мира, углерод не содержащих. Вселенская насыщенность ядрами углерода — он образуется в ядрах звезд, выводится к их поверхности и затем отправляется в огромных количествах в галактику Млечный Путь — в сочетании с его дружелюбной готовностью образовывать химические соединения с другими атомами делает углерод лучшим элементом-основой для формирования природной химии и разнообразия жизненных форм. Минимально опережая углерод по своей распространенности в мире, кислород (восемь протонов в ядре) тоже представляет собой высоко реактивный и распространенный элемент, чьи мировые запасы также образуются как внутри стареющих звезд (и выводятся ими в космос), так и внутри взрывающихся сверхновых. Кислород и углерод — важнейшие ингредиенты жизни на Земле, жизни в привычном для нас виде. Аналогичные процессы участвуют в создании и распространении во Вселенной азота, элемента номер семь, который также встречается в мире в огромных количествах.

Как насчет жизни в непривычном нас виде? Могут ли другие формы жизни использовать другие элементы в качестве основы своих сложных структур? Как насчет жизни, основанной на кремнии, элементе номер 14? В периодической таблице кремний расположен непосредственно под углеродом: это означает, что кремний способен создавать химические соединения того же плана, что и углерод, занимая в них, по сути, место углерода. В конце концов, углерод оказывается выше кремния, и не только потому, что в мире его в десять раз больше, но и потому, что химические связи, образуемые кремнием, получаются намного сильнее ощутимо слабее, чем углеродные связи, то есть ведут себя менее однообразно. Собственно, сила связи кремния и кислорода приводит к образованию крепких скальных пород, в то время как сложным молекулам на основе кремния трудно выживать в условиях экологического стресса, который нипочем соединениям на основании углерода. Эти факты не останавливают писателей научной фантастики, активно отстаивающих права кремния в своих произведениях; заодно это держит биологию внеземной жизни в постоянном напряжении — и мы непрестанно думаем о том, какой могла бы быть по-настоящему чуждая нам внеземная жизнь (и ее формы).

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже