Если рассуждать дальше и предположить, что электрическая сфера, которая до сих пор была в покое, пришла в движение под воздействием некоторой внешней силы, то поле электрического заряда будет изменяться с течением времени. Но движение этой заряженной сферы эквивалентно току, который сопровождается магнитным полем. Итак, физики пришли к следующему выводу: изменение электрического поля, произведённое движением заряда, всегда сопровождается магнитным полем.
Если колеблющийся заряд перестаёт двигаться, то его поле становится электростатическим. Но серия волн, созданных колебанием заряда, продолжает распространяться. Волны ведут независимое существование, так что история их изменений может быть прослежена так же, как и история любого другого материального объекта.
С введением понятия поля в физике произошло нечто весьма важное. Постепенно, хотя и не без борьбы, это понятие завоевало прочное положение в науке. Но было бы неверным считать, что идея поля освободила физику от заблуждений старой теории электрических жидкостей или что эта новая идея разрушает старую (в теории Максвелла мы, например, ещё обнаруживаем понятие электрического заряда, хотя заряд понимается только как источник электрического тока).
Сначала теоретики поле рассматривали как нечто, что в перспективе можно будет истолковать механистически с помощью эфира. Но со временем стало ясно, что эту программу осуществить невозможно. Единственный выход - это допустить, что пространство обладает физическим свойством передавать электромагнитные волны. Вместе с тем, по всей вероятности, слово "эфир" употреблять всё же можно, но исключительно для того, чтобы выразить вышеупомянутое физическое свойство пространства. "Слово эфир изменяло свой смысл много раз в процессе развития науки. В данный момент оно уже не употребляется для обозначения среды, построенной из частиц. Его история, никоим образом не законченная, продолжается теорией относительности" (Там же. - С. 452).
Итак, мы имеем две реальности: поле и вещество. Мы должны принять оба понятия. Но возникает вопрос: а можно ли считать поле и вещество двумя различными, совершенно несходными реальностями? Что составляет физический критерий, с помощью которого можно различить вещество и поле?
Когда не была известна теория относительности, ответ был простым: вещество имеет массу, а поле её не имеет. Такой ответ в сфере новых знаний совершенно недостаточен. Из общей теории относительности мы знаем, что вещество представляет собой огромные запасы энергии, и что энергия представляет вещество (См.: Там же. - С. 510). Таким образом, очень трудно провести качественное различие между полем и веществом, поскольку различие между массой и энергией, видимо, не качественное. Какой-либо резкой границы, разделяющей поле и вещество, невозможно себе представить. "Мы могли бы рассматривать вещество как такие области в пространстве, где поле чрезвычайно сильно. Таким путём можно было бы прийти к новым представлениям о природе. Их конечная цель состояла бы в объяснении всех событий в природе структурными законами, справедливыми всегда и всюду... В нашей новой физике не было бы места и для поля, и для вещества, поскольку единственной реальностью было бы поле. Этот новый взгляд внушён огромными достижениями физики поля, успехом в выражении законов электричества, магнетизма, тяготения в форме структурных законов и, наконец, эквивалентностью массы и энергии" (Там же. - С. 511).
Однако, авторы сочинения "Эволюция физики" констатировали, что "до сих пор мы не имели успеха в последовательном и убедительном выполнении этой программы". Поэтому во всех построениях "мы всё ещё должны допускать две реальности - поле и вещество" (Там же).
Развитие квантовой физики, начавшееся со знаменитой статьи М. Планка "О строении атомов и молекул" (1913), показало, что излучение носит двойственный корпускулярно-волновой характер. Нильс Бор не согласился с эйнштейновскими световыми квантами, предполагавшими дискретность пространственной структуры излучения. В вопросе о природе света Бор увидел гораздо более общую (не столько физическую), сколько методологическую проблему. Он писал, что "вопрос о существовании или отсутствии связи отдельных атомарных процессов нельзя просто рассматривать как различие между двумя чётко определёнными толкованиями распространения света в пустом пространстве, которые соответствовали бы корпускулярной или волновой теории света" (Бор Н. О действии атомов при соударениях //Бор Н. Избранные научные труды. Т. 1. - М., 1970. - С. 560). Речь, вероятнее всего, должна идти о том, насколько пространственно-временные представления, с помощью которых физики пытаются объяснить явления природы, применимы к описанию атомных процессов.