Еще одним немаловажным аспектом ИАР является то, что факт отсутствия ожидаемых данных также является информацией для аналитика. Использование сведений такого рода возможно тогда, когда существует некая модель, определяющая ожидания аналитика относительно момента появления данных, подтверждающих те или иные события. Но часто при построении систем автоматизации ИАР этот аспект работы аналитика игнорируется, а аналитик, увы, не всегда в состоянии помнить о том, что в тот или иной момент времени после события А должно наступить событие Б, сопровождающееся появлением данных Д(Б) — для этого следует помнить не только последовательность событий но и их информационный контекст (интерьеры).
Таким образом, решению проблемы ослабления дезадаптационного стресса, вызываемого неполнотой знаний аналитика и системы эвристик ЭС, могут служить именно системы гибридного интеллекта. «Гибридность» таких систем должна заключаться не только в том, что благодаря системе коммуникаций между отдельными субъектами ИАР формируется коллективный разум, но и в том, что коллективный разум должен включать в себя и те компоненты, которые обеспечиваются средствами автоматизации в виде систем искусственного интеллекта и экспертных систем. С одной стороны, такие системы призваны решать проблему интеллектуальной изолированности аналитика за счет создания среды информационного взаимодействия, а с другой
— управлять режимом предоставления данных, брать на себя функции управления поиском и отбором релевантных текущей работе аналитика.
Как это может быть сделано?
Прежде всего, подобная система (система гибридного интеллекта) должна быть интегрирована с инструментами типа майнд-мэпперов, которые должны стать одним из основных инструментов работы аналитика, за счет чего может быть осуществлена формализация системы рассуждений аналитика, включая и ссылки на данные, положенные в основу аргументации. Впрочем, если бы имели место проговаривание рассуждений, их регистрация, распознавание речи, логиколингвистическая обработка высказываний и автоматическое построение логико-лингвистических структур , отражающих рассуждения аналитика, было бы и того лучше. Такие модели с применением средств лингвистической обработки текстов могут быть подвергнуты автоматизированному анализу, за счет чего система сможет сформулировать поисковые задания для подбора аргументации, провести поиск ранее отмечавшихся сценариев анализа и предложить дополнительные массивы данных, а также сведения о возможных дополнительных источниках информации. Еще одна возможность, представляющаяся вполне реализуемой при современном уровне развития информационных технологий — это возможность отыскания шаблона сценария анализа, характерного для данного аналитика. Что позволяет предложить ему для ознакомления группу сценариев анализа, полученных в результате протоколирования работы других аналитиков.
Кроме того, используя лингвистические технологии, системы гибридного интеллекта способны регламентировать процесс информационного взаимодействия между аналитиками как на уровне представления данных, так и на уровне управления временными параметрами процесса коммуникации. Благодаря первой группе регламентов может быть снят (или ослаблен) стресс дезадаптации, вызванный различиями в способах представления данных, а благодаря введению временных регламентов может быть снижен эффект неожиданности акта коммуникации, сформирована привычка к разбиению ИАР на временные интервалы, посвященные различным видам активности.
Однако и это не все положительные свойства таких систем... Они могут стать мощным инструментом подготовки аналитиков, их ввода в контекст текущей ситуации, формирования рабочих групп в распределенных средах, что очень важно в крупных территориально распределенных информационно -аналитических службах государственного и ведомственного подчинения, диспетчирования информационных потоков по информационным направлениям и так далее.
Комментированному перечислению преимуществ такой идеологии построения систем комплексной поддержки ИАР можно было бы посвятить еще много страниц. Но мы предоставляем читателям возможность, как-нибудь на досуге, самостоятельно поразмышлять в этом направлении.
Класс инструментальных средств поддержки процессов анализа данных