Памятуя классическое деление этапов решения задач: анализ и синтез (восходящее еще к Паппу Александрийскому), попытаемся определить, что именно понимается под аналитическим методом в логике. Классический подход состоит в том, что логика рассматривает аналитический способ как способ решения «снизу вверх»: от формулы к аксиомам, а синтетический способ — как решение задачи «сверху вниз»: от аксиом к выводимой формуле. Это позволяет рассматривать классификацию логических исчислений по степени привлечения в их рамках аналитического и синтетического подходов. Соответственно, все логические системы можно условно разделить на:
29
«аналитические» системы — системы секвенциального исчисления, «синтетические» — аксиоматические системы, а также «смешанные» — системы натурального вывода.
Практика решения прикладных задач в области искусственного интеллекта показала ряд преимуществ аналитических и смешанных систем логических исчислений для задач представления знаний и построения выводов. Такая тенденция в сфере разработки и создания систем искусственного интеллекта наблюдается со времени опубликования работ С.Ю. Маслова — его идеи получили свое практическое воплощение и развитие в работах отечественных ученых В.К. Финна и Д.А. Поспелова, дополнивших и развивших положения его работ. В частности, было введено понятие квази-аксиоматических систем, система аксиом в которых обладает локальной областью определения и может подвергаться коррекции без переопределения всей системы аксиом, значимых для производства вывода в рамках целостной системы искусственного интеллекта. В настоящее время это направление интенсивно разрабатывается американскими специалистами в области построения искусственного интеллекта в рамках проектов министерства обороны, направленных на создание систем поддержки информационноаналитической работы.
Рассмотрим, какие именно практические потребности аналитики призвана решать логика. Здесь следует выделять два класса задач:
- задачи анализа рассуждений;
- задачи технологического обеспечения.
При решении задач анализа рассуждений логика выступает в качестве инструмента, с помощью которого устанавливается не «истина», как адекватность (т. е. соответствие) содержания рассуждений реальному миру, а факт их логической непротиворечивости (верификации рассуждений). Если построенная логическая система непротиворечива, то она для одной реальности или математической модели может быть адекватна и уже в силу этого истинна, а для некоторой другой — нет. Если же логическая система изначально противоречива, то разговора о ее адекватности чему бы то ни было (и истинности) в любом случае не может быть. Если говорить о естественнонаучных знаниях, то критерием их истинности является практика. Однако для того, чтобы логические методы могли быть применены для вывода истинных суждений о некой предметной области, она должна быть предварительно формализована и описана в виде некоторого набора суждений, поддающихся логическому анализу (эталонной модели фрагмента реальности). Методы логики могут быть также использованы для выявления противоречий в системе рассуждений и относительно этого эталона.
Задачи технологического обеспечения информационно-аналитической работы затрагивают проблемы использования логического аппарата для синтеза эталонных моделей предметной области и инструментария хранения и поиска данных. В том числе — для тех предметных отраслей, формализация в которых затруднена из-за действия комплекса ограничений объективного характера (например, естественно-языковых суждений, для которых характерны размытость границ состояний, полисемия /многозначность/ и иные явления).
К числу проблем, активно разрабатываемых в логике в настоящее время, относятся такие, как проблема построения логических систем, пригодных для решения задач формализации рассуждений на естественных языках, решения задач представления логики суждений или событий в условиях использования многозначных шкал, отображающих различную степень уверенности эксперта в достоверности факта, стадию изменения состояния между некими полярными исходами и т. п., для задач отображения развертки процесса во времени, отображения отношений не столько причинно-следственного, сколько временного плана (строгое предшествование, нестрогое предшествование и т. п.). Эти задачи, нетрадиционные для классической логики попали в центр внимания современной логики благодаря необходимости анализа больших массивов данных при моделировании рассуждений экспертов в рамках синтеза экспертных систем, систем искусственного интеллекта и иных приложений.