Читаем Юный радиолюбитель [7-изд] полностью

После детекторного и однотранзисторного приемников ты начнешь (а может быть, уже начал) конструировать усилители 3Ч и более сложные приемники, позволяющие слушать радиопередачи не на головные телефоны, а на электродинамическую головку прямого излучения.

Усилитель 3Ч можно использовать для усиления речи, например для радиоузла. Первым звеном такого радиотехнического устройства будет микрофон, а конечным — громкоговорители.

Для громкого воспроизведения грамзаписи тебе помимо усилителя 3Ч потребуется еще звукосниматель — прибор, с помощью которого записанный на грампластинке звук преобразуется в электрические колебания звуковой частоты. Конечным звеном этого устройства также будет электродинамическая головка прямого излучения.

Познакомься с устройством и принципом работы этих приборов.


МИКРОФОНЫ


Ты уже знаешь, что микрофон является преобразователем звуковых колебаний воздуха в электрические колебания, которые могут быть усилены, а затем преобразованы снова в звук.

Самый простой и самый старейший микрофон — угольный. Внешний вид некоторых малогабаритных угольных микрофонов показан на рис. 150. Это так называемые микрофонные капсюли типов МК-10 и МК-59, особенно широко используемые в телефонии.



Рис. 150.Угольные микрофоны


Устройство угольного микрофона в упрощенном виде, принцип его действия и графики, иллюстрирующие его работу, изображены на рис. 151.



Рис. 151.Работа угольного микрофона


Такой микрофон представляет собой металлическую коробку с угольным порошком, которую прикрывает гибкая металлическая или угольная пластинка-мембрана. Мембрана изолирована от коробки. Ток между ними может проходить только через угольный порошок. Источником тока является батарея GB. Пока перед микрофоном не говорят, мембрана находится в спокойном состоянии (рис. 151, а), в цепи микрофона, образованной батареей и угольным порошком, течет ток Iмк. Значение его зависит главным образом от сопротивления угольного порошка и определяется плотностью прилегания его частиц. Но вот перед микрофоном начали говорить. Под действием звуковых волн мембрана стала колебаться, то прогибаясь внутрь коробки (рис. 151, б), то выгибаясь наружу (рис. 151, в). Колеблясь, мембрана то уплотняет частицы угольного порошка, отчего его сопротивление уменьшается, то расслабляет контакты между ними, отчего сопротивление микрофонной цепи увеличивается. А если изменяется сопротивление микрофонной цепи, то (по закону Ома) изменяется и ток в ней.

Пока перед микрофоном не говорили, ток в его цепи был постоянным. Как только начали говорить, ток стал пульсировать с частотой звуковых колебаний. Микрофон, следовательно, преобразовал звуковые колебания воздуха в электрические колебания звуковой частоты. Если в микрофонную цепь включить электромагнитный телефон, то электрические колебания будут преобразованы им в звуковые колебания.

Ток звуковой частоты в микрофонной цепи образуют две его составляющие — постоянная, соответствующая среднему значению тока в цепи, и переменная, соответствующая амплитудным значениям колебаний тока, созданных микрофоном. В телефонии и в радиотехнических устройствах по проводам передают обычно только переменную составляющую, а постоянную, выполнившую свою задачу, как правило, замыкают в очень короткой микрофонной цепи.

Такое разделение тока звуковой частоты на его составляющие можно осуществить, например, с помощью трансформатора, что и иллюстрирует рис. 152.



Рис. 152.Разделение тока цепи микрофона на его составляющие


Здесь микрофон В1, источник тока GB и обмотка I трансформатора Т образуют первичную микрофонную цепь, а обмотка II трансформатора и телефон В2 — вторичную. В первичной цепи течет ток, пульсирующий в такт со звуковыми колебаниями воздуха перед микрофоном. Колебания этого тока индуцируют в обмотке II трансформатора переменное напряжение звуковой частоты, которое заставляет телефон звучать.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже