Читаем Юный техник, 2000 № 06 полностью

Природу этого явления трактует созданная А. Эйнштейном общая теория относительности, которая описывает тяготение как воздействие материи на свойства пространства и времени. Согласно этой теории, тяготение — есть искривление пространственно-временного континуума. Наглядно, так сказать, на пальцах проиллюстрировать, что это такое, практически невозможно. Мы способны представить себе разве что искривленную поверхность. Если, скажем, на растянутое полотнище из резины опустить груз (например, стальной шарик), то мы увидим, как оно прогнется, образовав углубление. Если же такой груз еще и движется, возникают колебания. При этом по полотнищу распространяются волны, подобно тому как по воде разбегаются круги от брошенного в нее камня.

Такая аналогия весьма приблизительна, но все же дает какое-то представление о предмете сегодняшнего разговора.

Поскольку пространство, в отличие от резинового полотнища, обладает, по словам ученых, очень высокой жесткостью, чтобы его искривить, требуются гигантские гравитационные поля, а значит, и массы. Ведь иного источника гравитации, нежели масса, мы пока не знаем.

Долгое время в земных условиях существование гравитационных волн пытались доказать с помощью калиброванных масс. Скажем, в эксперименте американского физика Вебера роль эталонов играли два массивных цилиндра, которые по идее должны были чуть-чуть сместиться друг относительно друга при прохождении волны.

Однако как ни пытались экспериментаторы зафиксировать это «чуть-чуть», им так и не удалось получить бесспорных результатов. Датчики фиксировали что угодно: сотрясения почвы от проехавшего в километре трамвая), сейсмические колебания, но никак не гравитационные волны.

Нынешний этап исследований отличается от предыдущих тем, что исследователи с самого начала настраиваются на фиксирование лишь самых сильных гравитационных всплесков — таких, например, какие случаются при глобальных вселенских катастрофах. Когда, скажем, где-то вспыхнет сверхновая звезда, что на практике означает взрыв очень массивного небесного тела (в сотни, а то и миллионы раз массивнее нашего светила). Соответственно при этом происходит разброс огромных масс и резкие, очень сильные возмущения гравитационного поля. А всплески, вызываемые астрофизическими катастрофами в нашей или соседних галактиках, происходят довольно часто, чуть ли не ежемесячно.

Такая частота повторения события вполне приемлема для физиков-экспериментаторов.

Гораздо хуже другое: длительность такого всплеска составляет порядка 0,001 или даже 0,0001 с. Самая же большая сложность регистрации гравитационных волн заключается в том, что амплитуда смещения датчика даже в этом случае должна лежать, по расчетам, в пределах от 10-19 до 10-21 м! Иными словами, если сверхновая вспыхнет в нашем Млечном Пути, то расстояние между Солнцем и Землей изменится лишь на диаметр одного водородного атома! И чтобы засечь такое смещение, нужно немало потрудиться…

Детектор, монтируемый в окрестностях Ганновера, базируется на лазерных интерферометрах. В самом общем виде схема выглядит так.

Испускаемый лазером луч с помощью специального устройства делится пополам. Оба луча расходятся друг от друга под прямым углом. Каждый из них проходит внутри вакуумной трубы путь длиной 600 м. В конце он отражается от зеркала и возвращается в исходную точку. Накладываясь друг на друга, пришедшие лучи создают интерференционную картину, узор которой сохраняется неизменным до тех пор, пока не меняется расстояние, преодолеваемое лучами. Но если Земля окажется на пути гравитационной волны, теоретически длина одной из вакуумных труб на мгновение чуть-чуть уменьшится, а другой чуть увеличится. Этого должно оказаться достаточно, чтобы интерференционная картина изменилась.

Кроме того, частоты гравитационных волн согласно расчетам должны находиться в звуковом диапазоне. Это обстоятельство навело экспериментаторов на идею транслировать «музыку сфер» через динамики с таким расчетом, чтобы можно было даже на слух воспринять какие-то изменения.

Карлстен Дамстон полагает, что обнаружение гравитационных волн даст ученым дополнительные сведения об окружающем нас мире. Ведь сегодняшние методы изучения Вселенной базируются на регистрации лишь электромагнитного излучения; все на свете телескопы — рентгеновские, оптические или радио — фиксируют только их. А стало быть, мы практически ничего не знаем о тех объектах Вселенной, которые не излучают электромагнитных волн. Быть может, поэтому мы до сих пор так и не можем обнаружить скрытую массу? А ведь согласно вычислениям теоретиков все звезды, галактики, скопления составляют не более 10 процентов от общей массы Вселенной.

Вот бы обнаружить остальное.

Олег СЛАВИН

<p>НОВАЯ ЖИЗНЬ СТАРЫХ ИДЕЙ</p><p>Дирижабли завтрашнего дня</p>
Перейти на страницу:

Похожие книги

О медленности
О медленности

Рассуждения о неуклонно растущем темпе современной жизни давно стали общим местом в художественной и гуманитарной мысли. В ответ на это всеобщее ускорение возникла концепция «медленности», то есть искусственного замедления жизни – в том числе средствами визуального искусства. В своей книге Лутц Кёпник осмысляет это явление и анализирует художественные практики, которые имеют дело «с расширенной структурой времени и со стратегиями сомнения, отсрочки и промедления, позволяющими замедлить темп и ощутить неоднородное, многоликое течение настоящего». Среди них – кино Питера Уира и Вернера Херцога, фотографии Вилли Доэрти и Хироюки Масуямы, медиаобъекты Олафура Элиассона и Джанет Кардифф. Автор уверен, что за этими опытами стоит вовсе не ностальгия по идиллическому прошлому, а стремление проникнуть в суть настоящего и задуматься о природе времени. Лутц Кёпник – профессор Университета Вандербильта, специалист по визуальному искусству и интеллектуальной истории.

Лутц Кёпник

Кино / Прочее / Культура и искусство
12 лучших художников Возрождения
12 лучших художников Возрождения

Ни один культурный этап не имеет такого прямого отношения к XX веку, как эпоха Возрождения. Искусство этого времени легло в основу знаменитого цикла лекций Паолы Дмитриевны Волковой «Мост над бездной». В книге материалы собраны и структурированы так, что читатель получает полную и всеобъемлющую картину той эпохи.Когда мы слышим слова «Возрождение» или «Ренессанс», воображение сразу же рисует светлый образ мастера, легко и непринужденно создающего шедевры и гениальные изобретения. Конечно, в реальности все было не совсем так, но творцы той эпохи действительно были весьма разносторонне развитыми людьми, что соответствовало идеалу гармонического и свободного человеческого бытия.Каждый период Возрождения имел своих великих художников, и эта книга о них.

Паола Дмитриевна Волкова , Сергей Юрьевич Нечаев

Искусствоведение / Прочее / Изобразительное искусство, фотография