Читаем Юный техник, 2000 № 11 полностью

Такие рассуждения и приводят нас к соплу Лаваля. В нем скорость газа может в несколько раз превысить скорость звука. А его кинетическая энергия на 95–98 % соответствует той части тепла, которая теоретически может перейти в работу (рис. 2).

А теперь небольшое отвлечение. В 1990 году издательство «Знание» выпустило книгу «Огонь в упряжке», авторы А. Моравский и М. Файн. В ней говорится, что сопло такого типа было изобретено еще в 1848 году ван Ратеном (английский патент № 11800). Лавалю тогда было около трех лет. А свою турбину он создал лишь через сорок лет. Стало быть, сопло он изобрел хоть и самостоятельно, но заново. Однако надо учесть, что за такой срок авторские права перестают действовать, а заключенная в патенте идея становится достоянием всего человечества.

Так что сопло назвала именем Лаваля молва человеческая.

Ван Ратен в свое время не нашел полезного применения своему соплу. Во всяком случае, турбину на его основе он не создал. И вот. видимо, почему.

Скорость истечения пара из его сопла достигала 700–800 метров в секунду. Для того чтобы использовать эту энергию, такой же должна была быть и окружная скорость турбинного колеса. Но материалов, которые могли бы ее выдержать, не было в помине. Не появились они и во времена Лаваля. Однако он эту проблему сумел преодолеть.

Начал он с того, что придал лопаткам турбины особую форму. Теперь она могла «поймать» всю кинетическую энергию пара даже при скорости, в два раза меньшей.

Но и такую скорость обычный цилиндрический диск выдержать не мог. Тогда Лаваль додумался придать ему особую форму, при которой разрывающие его центробежные силы минимальны. Теперь ротор турбины мог выдерживать окружную скорость в 440 м/с. Но турбина еще не была работоспособна. При изготовлении ротора центр его масс всегда оказывался не на оси вращения, а где-то сбоку. Это приводило к вибрации, которая быстро разрушала вал. Казалось бы, отсюда следовало сделать вал как можно толще. Но Лаваль поступил наоборот. Насадил ротор на очень тонкий гибкий вал. И когда ротор начинал вращаться, вал изгибался до тех пор, пока центр масс не оказывался на оси вращения. Вибрация прекращалась.

Было в турбину заложено и много других технических хитростей. В свое время она производила большое впечатление на современников. И казалось, она должна была изменить мир. Но из-за громадных скоростей вращения места ей в большой энергетике так и не нашлось. Вероятно, турбина Лаваля стала бы со временем диковинным устройством. Однако многое изменилось, когда пришло время ракетной техники. Первым нашел применение соплу Лаваля К.Э.Циолковский в 1898 году, предложив космическую ракету с жидкостным реактивным двигателем.

Существовавшие в то время пороховые ракеты использовали простое сужающееся сопло. В результате скорость истечения продуктов сгорания была в 2–3 раза, а дальность полета в 4–9 раз ниже возможных. Использование же сопла Лаваля в ракетных снарядах наших «катюш» стало одной из главных причин успеха этого оружия.

Такими соплами оснащаются и все жидкостные реактивные двигатели. Правда, их форма несколько отличается от классического сопла Лаваля. Что позволяет уберечь их от расплавления и более полно использовать энергию продуктов сгорания (рис. 3).

Рис. 3

Ракетный двигатель — это, в сущности, комбинация камеры и сопла. Мощность одиночного двигателя большой ракеты может достигать 36 миллионов кВт при весе менее одной тонны! Мощность турбонасосного агрегата для подачи в него кислородно-водородного топлива более 80 000 кВт. Это крохотное, размером с ведро, устройство состоит из центробежного насоса и турбины Лаваля. Вот где она нашла себе достойное применение!

Огромная мощность реактивного двигателя, в сущности, мощность покидающего его потока газов. Он отдает ее ракете полностью, когда та движется со скоростью истечения газов. Сам поток в этом случае относительно Земли неподвижен. Но ракета, особенно космическая, использует двигатели только для разгона. Скорость ее постоянно меняется. По этой и другим причинам на пользу дела идет лишь небольшая часть энергии двигателей. КПД ракеты меньше, чем у паровоза.

Существуют и иные устройства, выполняющие роль улавливателя энергии. Еще в 1840 году Армстронг создал пароэлектрическую машину (рис. 4).

Водяной пар проходил через электрическое поле и, отдавая ему часть энергии, создавал ток. КПД устройства оказался ничтожно мал.

Другой способ был предложен М.Фарадеем. Если поток электропроводящего вещества движется между полюсами магнита, в нем точно так же, как и при движении обычного проводника, появляется ЭДС. Остается лишь использовать ее (рис. 5).

Перейти на страницу:

Похожие книги

Кошачья голова
Кошачья голова

Новая книга Татьяны Мастрюковой — призера литературного конкурса «Новая книга», а также победителя I сезона литературной премии в сфере электронных и аудиокниг «Электронная буква» платформы «ЛитРес» в номинации «Крупная проза».Кого мы заклинаем, приговаривая знакомое с детства «Икота, икота, перейди на Федота»? Егор никогда об этом не задумывался, пока в его старшую сестру Алину не вселилась… икота. Как вселилась? А вы спросите у дохлой кошки на помойке — ей об этом кое-что известно. Ну а сестра теперь в любой момент может стать чужой и страшной, заглянуть в твои мысли и наслать тридцать три несчастья. Как же изгнать из Алины жуткую сущность? Егор, Алина и их мама отправляются к знахарке в деревню Никоноровку. Пока Алина избавляется от икотки, Егору и баек понарасскажут, и с местной нечистью познакомят… Только успевай делать ноги. Да поменьше оглядывайся назад, а то ведь догонят!

Татьяна Мастрюкова , Татьяна Олеговна Мастрюкова

Фантастика / Прочее / Мистика / Ужасы и мистика / Подростковая литература
Диверсант (СИ)
Диверсант (СИ)

Кто сказал «Один не воин, не величина»? Вокруг бескрайний космос, притворись своим и всади торпеду в корму врага! Тотальная война жестока, малые корабли в ней гибнут десятками, с другой стороны для наёмника это авантюра, на которой можно неплохо подняться! Угнал корабль? Он твой по праву. Ограбил нанятого врагом наёмника? Это твои трофеи, нет пощады пособникам изменника. ВКС надёжны, они не попытаются кинуть, и ты им нужен – неприметный корабль обычного вольного пилота не бросается в глаза. Хотелось бы добыть ценных разведанных, отыскать пропавшего исполина, ставшего инструментом корпоратов, а попутно можно заняться поиском одного важного человека. Одна проблема – среди разведчиков-диверсантов высокая смертность…

Александр Вайс , Михаил Чертопруд , Олег Эдуардович Иванов

Фантастика / Прочее / Самиздат, сетевая литература / Фантастика: прочее / РПГ
100 легенд рока. Живой звук в каждой фразе
100 легенд рока. Живой звук в каждой фразе

На споры о ценности и вредоносности рока было израсходовано не меньше типографской краски, чем ушло грима на все турне Kiss. Но как спорить о музыкальной стихии, которая избегает определений и застывших форм? Описанные в книге 100 имен и сюжетов из истории рока позволяют оценить мятежную силу музыки, над которой не властно время. Под одной обложкой и непререкаемые авторитеты уровня Элвиса Пресли, The Beatles, Led Zeppelin и Pink Floyd, и «теневые» классики, среди которых творцы гаражной психоделии The 13th Floor Elevators, культовый кантри-рокер Грэм Парсонс, признанные спустя десятилетия Big Star. В 100 историях безумств, знаковых событий и творческих прозрений — весь путь революционной музыкальной формы от наивного раннего рок-н-ролла до концептуальности прога, тяжелой поступи хард-рока, авангардных экспериментов панкподполья. Полезное дополнение — рекомендованный к каждой главе классический альбом.…

Игорь Цалер

Биографии и Мемуары / Музыка / Прочее / Документальное