Из 86 команд, первоначально пожелавших участвовать в гонке, жюри отобрало только 25. Из них на заключительном этапе соревнований на старт вышли 15. Среди участников наряду с представителями таких серьезных учреждений, как, например, Институт робототехники Университета Карнеги-Меллона в Питтсбурге, были и ученики одной из калифорнийских школ.
Собственно, соревнование под громким названием «Большой вызов» состоит из двух этапов. Первый из них — это квалификационный заезд. Здесь роботы должны продемонстрировать способность самостоятельно передвигаться и объезжать различные естественные и рукотворные препятствия — овраги, водные преграды, линии электропередачи… От машин требуется умение двигаться по дорогам с разным покрытием, поскольку на протяжении главной трассы соревнований, помимо асфальтированных, есть грунтовые, песчаные и каменистые отрезки дорог.
Аппараты, прошедшие испытание на прочность, выносливость и сообразительность, смогли принять участие в главной гонке.
Хотя основной упор был сделан на умение ориентироваться и правильно выбирать маршрут, «физическая» выносливость, а точнее, возможность быстрого передвижения и маневрирования, а также способность «выживать» в тяжелых условиях тоже очень важны. Поэтому неудивительно, что прототипами гонщикам послужили гражданские и военные внедорожники.
Так, например, команда Университета штата Огайо Team Теггашах установила два радара, шесть видеокамер и четыре лазерных сканера на огромном трехосном грузовике. Однако увеличение количества датчиков может и навредить: каждый из них посылает мощный поток информации, и компьютеры робота могут не справиться с ее обработкой. Поскольку машина подпрыгивает и трясется, результаты локационных обзоров могут показаться роботу противоречивыми и сбить его с толку. К тому же совсем не просто объединить данные от воспринимающих устройств разных типов: лазерные сканеры генерируют облака точек, радары выдают прямоугольные отметки, а стереокамера формирует так называемую карту несоответствий. Нужно быть очень осмотрительным, чтобы совместить достоинства датчиков, а не их недостатки.
Среди лидеров, как уже говорилось, числилась команда из питтсбургского Университета Карнеги-Меллона под предводительством профессионального конструктора роботов Уильяма Уиттейкера, выставившая на старт красный четырехколесный Sandstorm («Песчаная буря») на базе внедорожника Hummer М998.
Сделать автомобиль-робот не так уж сложно, считает руководитель команды. В Институте робототехники Уиттейкеру уже приходилось строить самоуправляющиеся машины для разбора завалов, уборки урожая, составления карт горных выработок и поиска метеоритов в Антарктиде. Под его же руководством были построены два самоходных робота для обследования вулканов. Однако он прекрасно понимал, что оснастить вездеход необходимым оборудованием — лишь часть дела. Главное отладить приборы так, чтобы в пути не было сбоев.
Кроме того, чтобы выиграть, Sandstorm должен двигаться со средней скоростью не менее 10 м/с (36 км/ч), т. е. примерно в 10 раз быстрее экспериментальных роботов, созданных в ходе четырехлетней программы DARPA по разработке наземных транспортных средств, функционирующих без вмешательства человека.
1— видеопроцессор; 2— стереокамера; 3— лазер дальней зоны; 4— пневмопривод; 5 — антенна радара; 6— лазер ближней зоны; 7— ограждение радиатора; 8— амортизатор; 9— электронный блок; 10— дизель-генератор для питания оборудования; 11— сверхточный измеритель пройденного расстояния; 12— компьютер управления; 13— навигационный компьютер; 14— компьютеры принятия решений; 15— винтовые пружины и амортизаторы; 16— лазер ближней зоны задней полусферы; 17— антенны GPS-системы.
Тем не менее, 30 апреля 2003 года в конференц-зале Института робототехники Университета Карнеги-Меллона встал высокий человек и заявил: «Разрешите представиться: Уиттейкер, директор Центра полевой робототехники. Я намерен возглавить одну из команд и привести ее к победе в Лас-Вегасе. Добровольцев прошу подойти ко мне»…