Читаем Юный техник, 2007 № 06 полностью

Иными словами, процессом вычислений можно управлять импульсами переменного магнитного поля. При этом в молекуле есть прямая связь между спинами, и потому она является идеальной заготовкой для квантового компьютера, а сам спектрометр — почти готовый процессор. Однако в настоящее время удается работать с системами, в которых не более 5–7 спинов, а их нужно не менее 100.



Общий вид квантового компьютера Orion.

Укрощение ионов


Другой подход основан на использовании электромагнитных ловушек, в которых содержатся «подвешенные» в вакууме ионы. Первые ионные ловушки создали еще полвека назад, когда понадобился эталон времени для атомных часов; в таких часах колеблющиеся ионы играют роль маятников. Но для квантового компьютера одного иона недостаточно. Нужна, как минимум, сотня. Создание таких «многоместных» ловушек — задача непростая, но специалисты ее успешно решают.

Больше других преуспели в этом направлении ученые Инсбрукского университета в Австрии и сотрудники Лос-Аламосской лаборатории в США.



Принципиальная схема «ловушек» для кубитов.


Для квантового компьютера, напомним еще раз, нужна хотя бы сотня частиц. А в вытянутой цепочке, как показала практика, пока можно удержать максимум 30 ионов. При большем количестве одномерный кристалл теряет устойчивость — образуется «зигзаг», неустойчивая структура. Решить эту проблему ученые планируют, объединив несколько ловушек — скажем, по 10 частиц в каждой — в одну систему.


В дело — твердое тело


Третий подход — создать квантовый компьютер на твердом теле. Исследователи Физико-технологического института РАН (ФТИАНа) под руководством академика К.А. Валиева намерены создать квантовый компьютер на основе кремниевых микрочипов, подобных тем, которые использует традиционная микроэлектроника.

Через каждые 100 ангстрем в кристалл кремния внедряют атомы фосфора; этой операцией технологи прекрасно владеют уже сегодня. На таком расстоянии облака внешних электронов атомов фосфора пересекаются, и один атом может управлять электронами другого.

Над этими атомами располагают 50-ангстремные микроэлектроды. Изменяя напряжение на электроде, можно менять и резонансную частоту спина ядра атома фосфора. Получается структура, очень похожая на современный полевой транзистор: как бы те же затворы, только вместо тока — состояния атома. Причем наши физики предлагают работать не с одним, а сразу с серией атомов, действующих параллельно. Тогда на выходе сформируется сравнительно мощный сигнал, который легче регистрировать.


Обозримые горизонты


Пока же суд да дело, канадская фирма D-Wave Systems, объявившая о создании квантового компьютера Orion мощностью в 16 кубит, использовала в своем устройстве кольца из сверхпроводника с одним или двумя разрывами толщиной в нанометры. Эти разрывы заполняются диэлектриком. «В каждом кольце реализуется необычное квантовое состояние, когда токи текут одновременно и по, и против часовой стрелки», — сообщают создатели «Ориона».

Охлаждаемый до температуры кипения жидкого гелия (-273,145 °C) процессор выполнен из ниобия (металла-сверхпроводника) с использованием традиционной микроэлектронной технологии.

«Наш квантовый компьютер не будет узкоспециализированным вычислителем, ориентированным, к примеру, исключительно на криптографию, — подчеркнул Херб Мартин, заместитель главного исполнительного директора компании. — Это устройство широкого профиля пригодится в различных областях — от чистой математики до генной инженерии и создания лекарств»…

Впрочем, по мнению многих специалистов, 16 кубит — очень мало; вычислительные способности такого компьютера на уровне простого калькулятора. А вот 100 кубит уже достаточно, чтобы квантовый компьютер стал мощнее любой суперЭВМ.

Однако в ближайшем будущем квантовые компьютеры все же вряд ли вытеснят обычные. Работы хватит и тем и другим. «Мое видение будущего таково: в обычном компьютере появится специальный квантовый процессор, который будет использоваться для решения сверхсложных задач, — сказал академик Валиев. — А для всех остальных случаев достаточно традиционной электроники»…

Публикацию подготовил А. ПЕТРОВ

КОЛЛЕКЦИЯ ЭРУДИТА

Художники Возрождения пользовались оптикой

Художники эпохи Возрождения, в том числе и представители знаменитой фламандской школы живописи! при создании своих шедевров использовали последние достижения оптиков своего времени, пишет журнал «Нейчур». И приводит такие подробности.



Перейти на страницу:

Похожие книги

Алов и Наумов
Алов и Наумов

Алов и Наумов — две фамилии, стоявшие рядом и звучавшие как одна. Народные артисты СССР, лауреаты Государственной премии СССР, кинорежиссеры Александр Александрович Алов и Владимир Наумович Наумов более тридцати лет работали вместе, сняли десять картин, в числе которых ставшие киноклассикой «Павел Корчагин», «Мир входящему», «Скверный анекдот», «Бег», «Легенда о Тиле», «Тегеран-43», «Берег». Режиссерский союз Алова и Наумова называли нерасторжимым, благословенным, легендарным и, уж само собой, талантливым. До сих пор он восхищает и удивляет. Другого такого союза нет ни в отечественном, ни в мировом кинематографе. Как он возник? Что заставило Алова и Наумова работать вместе? Какие испытания выпали на их долю? Как рождались шедевры?Своими воспоминаниями делятся кинорежиссер Владимир Наумов, писатели Леонид Зорин, Юрий Бондарев, артисты Василий Лановой, Михаил Ульянов, Наталья Белохвостикова, композитор Николай Каретников, операторы Леван Пааташвили, Валентин Железняков и другие. Рассказы выдающихся людей нашей культуры, написанные ярко, увлекательно, вводят читателя в мир большого кино, где талант, труд и магия неразделимы.

Валерий Владимирович Кречет , Леонид Генрихович Зорин , Любовь Александровна Алова , Михаил Александрович Ульянов , Тамара Абрамовна Логинова

Кино / Прочее