Читаем Юный техник, 2008 № 02 полностью

Вы знаете, наверное: если мячик уронить, например, с высоты один метр, то он подпрыгнет на меньшую высоту. Иначе и быть не может. Часть энергии падающего мяча выделяется в виде тепла, а оставшейся не может хватить даже на то, чтобы мячик вновь подпрыгнул на прежнюю высоту. Ничего не поделаешь: закон сохранения энергии! А вот вам опыт, где, на первый взгляд, этот закон словно не действует. Наполните литровую бутыль водой по самое горлышко и аккуратно уроните ее с высоты всего 1 см. Будьте осторожны! Тонкая струйка воды из горлышка взлетит до потолка!

Казалось бы, на этом принципе можно сделать вечный двигатель. Но приглядитесь: в момент удара бутылки о стол из горлышка медленно выплескивается вода. В этом вся «соль».

При ударе в бутылке резко возрастает давление и стенки ее растягиваются. В следующий миг они начинают сжиматься, посылая потоки воды в сторону оси бутылки. Далее эти потоки встречаются, и в них начинается перераспределение энергии. Скорость потоков, расположенных на оси, резко возрастает, и они, сливаясь в струю, летят под потолок. А окружающие слои, отдав ей свою энергию, с трудом переливаются через край горлышка бутылки.

Бутылка, сорвавшись с пробки, превратилась в ракету.

Нечто подобное происходит при взрыве бронебойного кумулятивного заряда. Он представляет собой кусок взрывчатки с углублением посередине. При взрыве заряда часть газов встречается на оси углубления и с большой скоростью выдавливаются наружу, отдавая ей часть своей энергии. Получается концентрированная скоростная струя, которая пробивает значительно более толстую броню, чем это могла сделать взрывчатка без углубления.

Если пластиковую бутылку с водой уронить с высоты всего лишь один сантиметр, струя воды может достать до потолка!

А. ИЛЬИН

Рисунки автора

<p>ОСТРЫЙ РАКУРС</p><p>Проблема поющего крюка</p>

Несколько лет назад жителей одного из районов подмосковного города Электросталь насторожили странные звуки на стройке. Голоса, музыка, сигналы точного времени… На стройке при этом никого не было, а звуки шли от… крюка подъемного крана, он транслировал программу ближайшей радиостанции. И этот случай не единственный.

За последние десятилетия мощность радиостанций достигла сотен и тысяч киловатт. Напряженность их электромагнитных полей стала в тысячи раз превосходить естественный радиоволновый фон, создаваемый грозами, солнцем и излучением, приходящим из космоса.

Вопрос о вреде радиоволн до конца не ясен. Но очевидно: находиться непосредственно вблизи передающей антенны опасно для здоровья. По мере удаления от нее напряженность поля — она измеряется в вольтах на метр (В/м), — снижается. Принято считать, что напряженность меньше 5 В/м безопасна для человека. Исходя из этого, и выбираются размеры охранных зон вблизи радиостанций. Строительство жилья, офисов или производственных помещений в пределах такой зоны, а также нахождение в них посторонних людей не допускается.

Надо сказать, что в большинстве случаев за пределами таких зон никаких вредных воздействий на человека не наблюдается. Все это было действительно так до тех пор, пока люди не начали строить высокие сооружения с металлическими каркасами — здания, башни, заводские трубы…

Любой проводник, находящийся в поле радиоволн, является приемной антенной. Если его длина равна целому числу полуволн приходящего излучения (для предметов, стоящих на земле, — четвертей волн), то возникает резонанс и проводник сам начинает излучать радиоволны. При этом вблизи проводника напряженность излучаемых им электромагнитных волн может оказаться во много раз выше напряженности волн, приходящих от радиостанции.

В г. Электросталь под действием излучения расположенной неподалеку мощной радиостанции на 50-метровой башне подъемного крана, стреле и тросе возникла стоячая волна. Пучность напряжения (зона с максимально высокой амплитудой) оказалась именно на крюке.

Поскольку энергия радиоволн накапливалась на протяжении многих периодов колебаний, амплитуда электрического поля возросла до нескольких тысяч вольт на метр на крюке, как на самой острой детали. В результате начался электрический разряд, и возможно было даже свечение. Почему крюк начал звучать?

Воздух вокруг крюка электрически заряжался, ионизировался. Ионы под действием электрического поля пришли в движение. А радиостанция, не будем забывать, передавала сигнал, модулированный по амплитуде. Колебания воздуха у крюка в точности повторяли амплитуду передаваемых сигналов. Так появился звук. Надо сказать, что на этом принципе работает ионофон — громкоговоритель, очень чисто воспроизводящий звук.

Перейти на страницу:

Похожие книги

99 глупых вопросов об искусстве и еще один, которые иногда задают экскурсоводу в художественном музее
99 глупых вопросов об искусстве и еще один, которые иногда задают экскурсоводу в художественном музее

Все мы в разной степени что-то знаем об искусстве, что-то слышали, что-то случайно заметили, а в чем-то глубоко убеждены с самого детства. Когда мы приходим в музей, то посредником между нами и искусством становится экскурсовод. Именно он может ответить здесь и сейчас на интересующий нас вопрос. Но иногда по той или иной причине ему не удается это сделать, да и не всегда мы решаемся о чем-то спросить.Алина Никонова – искусствовед и блогер – отвечает на вопросы, которые вы не решались задать:– почему Пикассо писал такие странные картины и что в них гениального?– как отличить хорошую картину от плохой?– сколько стоит все то, что находится в музеях?– есть ли в древнеегипетском искусстве что-то мистическое?– почему некоторые картины подвергаются нападению сумасшедших?– как понимать картины Сальвадора Дали, если они такие необычные?

Алина Викторовна Никонова , Алина Никонова

Искусствоведение / Прочее / Изобразительное искусство, фотография