Читаем Юный техник, 2008 № 02 полностью

Центральное место в конструкции занимает разрядник особой конструкции. Два металлических кольца диаметром около 4 см соединены сотнями вольфрамовых нитей, каждая из которых много тоньше человеческого волоса. В строго определенный момент через эту паутину разряжаются 36 батарей мощных конденсаторов особой конструкции, способных выдерживать большую пиковую нагрузку — так называемых генераторов Маркса. Под действием тока в 26 млн. ампер вольфрамовые волоски мгновенно испаряются, а мощное магнитное поле разряда сжимает плазму в тонкий шнур и вытягивает вдоль оси цилиндра.

Происходит своего рода взрыв. Только продукты взрыва и ударная волна распространяются не в стороны, как обычно, а, напротив, происходит процесс имплозии (implosion), сжатия — своего рода как бы «взрыв вовнутрь».

При этом ионы разгоняются и сталкиваются друг с другом со скоростью несколько тысяч километров в секунду. Температура в центре устройства может превысить 1,5 млн. градусов, а в виде рентгеновского излучения выделяется примерно 1,6 мегаджоуля энергии. Примерно столько же выделяется при сгорания 40 г бензина.

На первый взгляд это немного. Но не забывайте, что вспышка длится всего около 50 наносекунд (50 миллиардных долей секунды), и в результате мощность рентгеновской вспышки составляет около 30 тераватт (в пике еще больше). А эта величина уже на порядок превышает суммарную мощность всех электростанций Земли.

Суперконденсатор, или генератор Маркса, внешне похож на прозрачную трубку (внешняя обкладка конденсатора), внутри которой расположен центральный электрод (внутренняя обкладка конденсатора).

Поэтому на Z-машине удается моделировать не только ядерные, но и термоядерные взрывы. Когда в фокус разряда поместили маленькую капсулу с дейтерием, в момент вспышки был зарегистрирован поток нейтронов, что говорит о протекании реакций термоядерного синтеза. Поэтому Национальное управление по ядерной безопасности США выделило 61,7 млн. долларов на совершенствование Z-машины. Пиковую мощность планируется повысить до 2,7 мегаджоулей, а количество экспериментов с 200 до 400 в год.

По материалам журнала Popular Science

<p>РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…</p><p>«Жидкая» броня</p>

Я слышал, что появилась броня из жидкости. Как это может быть? Известны ли подробности?

Виктор Самусенков,

г. Тула

Разведите крахмал в воде из расчета примерно половина на половину, и у вас получится своеобразный кисель. Вы можете мешать его чайной ложкой, но только медленно. Попробуйте приложить усилие — и ничего не выйдет: сил может не хватить. Примерно так работает и «жидкая» броня.

Впрочем, обо всем по порядку.

Похвальное слово кевлару

Еще недавно броневая защита была лишь двух типов. Во-первых, так называемая пассивная броня, которая существовала еще в древние времена. Удару меча, копья или стрелы противостояли щиты, панцири, кольчуги… Появление огнестрельного оружия, казалось, эпоху доспехов завершило, поскольку пуля пробивала любой панцирь.

Второе рождение брони состоялось лишь в начале XX века. На поле боя появились бронемашины, а затем — уже во второй половине прошлого столетия — все шире стали распространяться бронежилеты.

Более легкие сейчас делают из синтетических материалов. А те, что тяжелее, имеют еще специальные карманы, в которые вставляют пластинки из титана или специальной керамики. Именно они противостоят винтовочным или автоматным пулям, в то время как жилеты без вставок спасают лишь от пуль пистолетов.

Впрочем, не стоит думать, что под ударами скоростных и тяжелых пуль кевлар рвется. Нет, кевлар — его химическое название «полипарафениленфталамид» — в 4 раза прочнее стали. Так что скажем за него спасибо химикам во главе со Стефани Кволек, синтезировавшим этот материал в 60-х годах прошлого века. В наши дни в современных бронежилетах используют и более современный материал Zylon, созданный в Японии. Он еще легче и прочнее кевлара.

Тем не менее, все чаще легкие бронежилеты подводят полицейских и бойцов спецназа. И дело здесь не только в возросшей огневой мощи современного оружия, но в том, что иной раз пуля травмирует тело, хотя и не прорывает нитей синтетического волокна. Именно в таких случаях выручает броневая пластинка. Она к тому же распределяет приложенную силу на большую площадь, а то ведь от пуль на теле остаются гематомы.

Однако такие жилеты, как уже сказано, тяжелы (их вес достигает 15 кг), стесняют движения бойцов. Стало быть, их нужно улучшать.

Что у вас в активе?
Перейти на страницу:

Похожие книги

99 глупых вопросов об искусстве и еще один, которые иногда задают экскурсоводу в художественном музее
99 глупых вопросов об искусстве и еще один, которые иногда задают экскурсоводу в художественном музее

Все мы в разной степени что-то знаем об искусстве, что-то слышали, что-то случайно заметили, а в чем-то глубоко убеждены с самого детства. Когда мы приходим в музей, то посредником между нами и искусством становится экскурсовод. Именно он может ответить здесь и сейчас на интересующий нас вопрос. Но иногда по той или иной причине ему не удается это сделать, да и не всегда мы решаемся о чем-то спросить.Алина Никонова – искусствовед и блогер – отвечает на вопросы, которые вы не решались задать:– почему Пикассо писал такие странные картины и что в них гениального?– как отличить хорошую картину от плохой?– сколько стоит все то, что находится в музеях?– есть ли в древнеегипетском искусстве что-то мистическое?– почему некоторые картины подвергаются нападению сумасшедших?– как понимать картины Сальвадора Дали, если они такие необычные?

Алина Викторовна Никонова , Алина Никонова

Искусствоведение / Прочее / Изобразительное искусство, фотография