Казалось бы, какие вулканы могут работать при почти 200-градусных морозах? Однако, как полагает сотрудник НАСА Роберт Нельсон, вулканизм, который имеет место на Титане, ввиду крайне низкой температуры спутника не случайно называется криовулканизмом. При сверхнизких температурах извергается не расплавленная горная порода, магма, а жидкая смесь водного льда и аммиака.
Новые снимки, полученные с окраины Солнечной системы, свидетельствуют о том, что существующие на поверхности Титана отложения аммиака формируются именно вследствие таких криоизливаний. «Аммиак вместе с метаном и азотом — основными компонентами атмосферы Титана — воспроизводит химию окружающей среды, существовавшей на Земле в то время, когда на ней только зарождалась жизнь», — отметил Нельсон.
«Ни одно из тел Солнечной системы не имеет такого сходства с Землей, как Титан, несмотря на огромную разницу в температуре и прочих факторах окружающей среды», — поддержала своего коллегу, представляя данные последних наблюдений космической экспедиции «Кассини-Гюйгенс», Розали Лопес из Лаборатории реактивного движения НАСА. На недавней ежегодной встрече Международного астрономического союза, которая прошла в Рио-де-Жанейро, она рассказала, что на Титане льют дожди, дуют ветры, извергаются вулканы и происходят тектонические сдвиги. На снимках, переданных автоматическим зондом-разведчиком, хорошо видны изображения поверхности Титана. Там есть кратеры, горные цепи, дюны и своеобразные озера. Причем ныне у ученых есть данные лишь об одной трети поверхности Титана. Но со временем, как они надеются, радар на борту зонда, вращающегося вокруг спутника Юпитера, передаст данные и о большей площади. Ведь Титан по размерам сопоставим с планетой Марс.
Правда, ему достается 1 % солнечного излучения от того количества, которое доходит до Земли. И потому с нашей земной точки зрения на Титане очень холодно. Однако, как показывает практика, низкая температура не может служить чересчур уж большим препятствием для развития жизни.
ПОДРОБНОСТИ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ
Золотое дерево
Его создали недавно вовсе не ювелиры, а американские исследователи. А понадобилось оно ученым для иллюстрации процесса фотосинтеза, который они решили воспроизвести без помощи зеленых растений.
Растения и некоторые другие организмы на планете Земля используют процесс фотосинтеза на протяжении как минимум 3,5 млрд. лет. И за это время природа разработала весьма остроумные реакции и комбинации белка со светопоглощающим красителем, которые помогают более-менее эффективно преобразовывать солнечный свет в энергию. Поэтому, чтобы не изобретать велосипед заново, Кейн Дженнингс и Питер Сишельски из Вандербильдского университета в Нэшвиле решили использовать патенты природы для создания своего собственного фотосинтезирующего устройства.
В этой работе они использовали также результаты исследований своего коллеги Элиаса Гринбаума, который в конце 90-х годов XX века смог извлечь из листьев шпината протеиновый комплекс, известный как PS1, и перенести его на золотую подложку, сохранив все его свойства.
«С тех пор, как процесс извлечения PS1 из растений был усовершенствован, мы задумались об использовании этих светопоглощающих белков для создания искусственных листьев», — вспоминает Дженнингс.
Устройство Дженнингса и Сишельски использует выпускаемые промышленностью тонкие листы из сплава серебра и золота. Их обрабатывают концентрированной азотной кислотой, чтобы серебро растворилось. При этом в оставшейся золотой подложке образуются крошечные поры-углубления наноскопических размеров в тех местах, где раньше размещались молекулы серебра.
В результате появляется хорошо обработанная поверхность, позволяющая разместить на ней большое количество PS1-комплексов. А сама золотая подложка в результате химической обработки истончается настолько, что становится прозрачной.
Когда искусственный лист подвергается воздействию света, PS1 генерируют поток электронов, и золотые «листья» вырабатывают ток величиной 8 наноампер на каждый квадратный миллиметр площади.
Конечно, это немного, но ученые уже работают над усовершенствованной моделью. «В данный момент мы занимаемся исследованием PS1-пленок толщиной до 1 мм, которые смогут вырабатывать до 0,02 мкА/мм 2и питать обычный калькулятор», — говорит Дженнингс.
Тем не менее, и эти устройства не смогут соревноваться в эффективности с лучшими солнечными батареями на основе кремния. А к тому же прямые солнечные лучи могут разрушить PS1-белки.
А пока, как отметил Гринбаум, полученные его коллегами результаты представляют большую ценность прежде всего «в изучении биологических процессов преобразования солнечной энергии».
ВЕСТИ С ПЯТИ МАТЕРИКОВ