Учитывая все свойства чешуйчатого покрова крыла бабочки и тот большой вклад, который чешуйки внесли в эволюцию бабочек, у меня возникла идея о возможном использовании ее аналога в самолетостроении.
С этой целью была изготовлена металлическая версия чешуйки. Данная «обшивка» имела верхнюю и нижнюю плоскости. Верхняя плоскость формируется при помощи ребрышек, которые соединены между собой перемычками. Между ними располагаются воздушные окна. Нижняя плоскость представляет собой тонкую плоскую пластину. Между верхней и нижней плоскостью есть воздушная полость, образованная при помощи маленьких опор (см. рис.).
UL— верхний слой; LL— нижний слой; Т— трабекула
Когда модель крыла с такой обшивкой была продута в аэродинамической трубе, оказалось, что при этом на 15 % увеличивается силовое воздействие потока на крыло. Летательный аппарат с подобными крыльями будет намного маневреннее обычного.
Кроме того, как показывают исследования, у ночных бабочек не случайно плотность чешуек превысила 2000 на кв. мм. В результате ультразвуковое волны локаторов летучих мышей, которые охотятся за этими бабочками, попав на чешуйки, теряют большую часть энергии и отражаются от крыла насекомого весьма слабым сигналом. Так же можно существенно снизить и радиолокационную заметность самолета.
1— внешний поток; 2— забор воздуха во внутреннюю полость; 3— вторичный поток; 4— выброс воздуха из обшивки; HP— область высокого воздушного давления; LP— область низкого давления.
Далее, в ходе эволюционного отбора, на крыльях бабочек из рода Plusia чешуйчатый покров стал еще своего рода зеркалом, в котором отражаются окружающие листья, травинки. В результате бабочка словно бы надела маскировочный халат. Подобная маскировка, наверное, пригодится и боевой технике.
Таким образом, как мы видим, в чешуйке бабочки заложено много всего, что может существенно улучшить летные характеристики самолетов. Такое покрытие запатентовано, и есть надежда, что со временем чешуйчатая обшивка появится на летательных аппаратах нового поколения.
У БАБОЧКИ ЕСТЬ РЕАКТИВНЫЙ ДВИГАТЕЛЬ?
Бабочки могут совершать перелеты в сотни и тысячи километров. При этом скорость полета некоторых бабочек превышает 100 км/ч.
Между тем при замедленной съемке отчетливо видно, как бабочка в полете периодически складывает крылья в вертикальном положении. Подъемная сила их в этот момент равна нулю, и бабочка, казалось бы, должна терять высоту. Но на практике этого не происходит. Почему?
На этот вопрос попытались ответить ученые Института эволюционной морфологии и экологии животных РАН.
В лаборатории морфологии беспозвоночных под руководством доктора биологических наук В. Свешникова были проведены сотни экспериментов, которые показали, что бабочка-лимонница в этот момент даже получает дополнительное ускорение и взмывает вверх. За счет чего?
Съемка крупным планом с разных ракурсов показала, что в момент «схлопывания» крыльев над телом насекомого отчетливо виден канал почти с правильным овальным сечением. Это сопло своеобразного реактивного двигателя, помогающего бабочке не только держаться в воздухе, но и придающего ей дополнительное ускорение.
В самом деле, в какой-то момент передняя пара крыльев образует своего рода воздухозаборник, а задняя — реактивное сопло. При сближении крыльев бабочки смыкают сначала переднюю часть крыльевых пластин, а потом волна как бы перекатывается к их задней кромке. В итоге крылья с силой выталкивают «зажатую» между ними порцию воздуха из «сопла», создавая тем самым реактивную струю…
Поскольку эта струя направлена под небольшим углом вниз, часть реактивной силы удерживает бабочку в воздухе и даже помогает набрать высоту, а другая сообщает ей дополнительную скорость.
Всего ныне ученым известны более десятка аэродинамических эффектов, которые помогают бабочкам лучше летать.
У СОРОКИ НА ХВОСТЕ