Обозначим все точки нашей фигуры буквами русского алфавита, — перечислим соотношения линий. В основе фигуры лежат шесть пар прямых линий (сторон прямоугольников), разделенных пополам, и две пары пересекающих их линий, каждая из которых разделяется на две неравные части. Если же учитывать не только изображенные на чертеже линии, но и те, которые могут быть проведены от точки к точке, то количество линий возрастет до 42 (рис. 19).
Рис. 19. Прямоугольный «вавилон». Слева — условные обозначения, справа метрические соотношения отдельных отрезков.
Все линии «вавилона» можно подразделить на три группы.
1. Часть линий является долями длинных сторон ВД — АЖ внешнего прямоугольника:
2. Другие линии представляют собой фракции диагонали квадрата, сторона которого равна ВД или АЖ:
3. Третья группа самых коротких линий тоже представляет сочетание сторон и диагоналей квадрата; эти линии получены как разность между длинными и короткими сторонами прямоугольников.
Если для простоты обозначить длинную сторону через А, то при помощи этой величины мы сможем выразить все линии «вавилона». Одни из них будут представлять последовательное деление на 2:
Линии «вавилона» образуют несколько пропорциональных рядов. Вот, например, один из них:
Среди линий «вавилона» нетрудно подыскать свыше десятка отношений, очень близких к «золотому сечению»:
Погрешность равна 0,003 этой стороны; при практических построениях она была мало заметна.
При помощи изучаемого нами графика можно быстро и с достаточной для практических целей точностью решить все важнейшие задачи средневековых геометров. Упомянутый выше Абуль-Вафа (940–998 гг.) посвятил специальную книгу задачам на построение равновеликих фигур. Со всей строгостью настоящего ученого обрушился он на «методы, применяемые рабочими, не основанные на каких-либо началах», и дал взамен их математически безупречные, но необычайно сложные и громоздкие решения этих задач, руководствуясь «началами» Эвклида. Однако не все задачи, интересовавшие тогдашних практиков, могли быть решены строго математически — такова, например, была древняя задача о нахождении геометрическим путем квадрата, равновеликого кругу, задача «квадратуры круга»[137]
.Современный Абуль-Вафе тмутараканский график из трех вписанных прямоугольников позволяет с очень большой степенью точности (хотя и не всегда теоретически верно) почти моментально решать все подобные задачи, включая и «квадратуру круга».
Рассмотрим несколько примеров, взяв за основу квадрат, сторона которого равна длинной стороне внешнего прямоугольника «вавилона» (
1.
Рис. 20. Приближенное решение квадратуры круга и других задач на равновеликость с помощью «вавилона».
Сторона удвоенного квадрата равна удвоенной боковой стороне «вавилона» (т. е.
2.
Сторона каждого малого квадрата равна
3.
Удвоенная линия БЛ (или три другие, ей соответствующие —
4.
5.