2
А. Е. Нaas. Jahr. d. Rad., 1910, 7, 261; см. также: A. Sсhidlоf. Ann. d. Phys., 1911, 35, 90; E. Wertheim. Phys. Zeitschr., 1911, 12, 409; Verb. Deutsch. Phys. Ges., 1912, S. 431; F. A. Lindemann. Там же, 1911, S. 482, 1107; F. Haber. Там же, 1911, S. 1117.Системы, подобные рассматриваемым в настоящей работе, у которых силы взаимодействия между частицами меняются обратно пропорционально квадрату расстояния, обсуждались с точки зрения теории Планка Дж. Никольсоном
1. В ряде работ он показан, что неизвестное до сих пор происхождение линии в спектре туманностей и солнечной короны представляется возможным объяснить, если допустить наличие в этих телах определённых гипотетических элементов с точно указанными свойствами. Атомы этих элементов должны состоять из кольца с небольшим числом электронов, окружающих положительное ядро исчезающе малых размеров. Соотношения между частотами, соответствующими указанным линиям, сравнимы с соотношениями между частотами, соответствующими различного рода колебаниям электронного кольца. Никольсон указал на связь с теорией Планка, показав, что соотношение длин волн различных групп линий в спектре солнечной короны можно с большой точностью передать, если принять, что отношение энергии системы к числу оборотов кольца равно целому кратному постоянной Планка. Величина, которую Никольсон принял за энергию, в два раза больше той, которую мы выше обозначили через W. В последней из названных работ Никольсон счел необходимым придать теории более сложную форму, сохранив тем не менее выражение отношения энергии к частоте в виде простой функции целых чисел.1
J. W. Nicholson. Month. Not. Roy. Astr. Soc., 1912, 72, 49, 139, 677, 693, 729.Казалось бы, что исключительно хорошее соответствие между вычисленными и наблюдаемыми значениями отношения соответствующих длин волн является сильным аргументом в пользу правильности основ расчётов Никольсона. Но против его теории можно выдвинуть серьёзные возражения. Эти возражения тесно связаны с проблемой однородности излучения. В расчётах Никольсона частота линий в спектре отождествляется с частотой колебания механической системы, находящейся в точно заданном положении равновесия. Поскольку применяется теория Планка, мы можем ожидать, что излучение испускается квантами. Но системы, подобные рассматриваемым здесь, у которых частота является функцией энергии, не в состоянии испускать конечное количество монохроматического излучения, ибо по мере излучения меняется энергия системы, а следовательно, и частота. Кроме того, по расчётам Никольсона, системы неустойчивы для некоторых видов колебаний. Отвлекаясь от этих возражений, которые могут быть только формальными (см. стр. 104), нужно отметить, что в такой форме теория представляется неспособной объяснить известные законы Бальмера и Ритца, охватывающие частоты линий в спектрах обычных элементов.
Мы попытаемся показать, что упомянутые трудности исчезают, если рассматривать вопрос с точки зрения, принятой в настоящей работе. Прежде чем перейти к изложению теории, совершенно необходимо ещё раз привести рассуждения, характеризующие расчёты на стр. 87. Основные допущения её следующие.
Динамическое равновесие системы в стационарных состояниях можно рассматривать с помощью обычной механики, тогда как переход системы из одного стационарного состояния в другое нельзя трактовать на этой основе.
Указанный переход сопровождается испусканием
Первое допущение напрашивается само собой, поскольку известно, что при расчёте движения электронов обычная механика теряет свою абсолютную применимость и справедлива только для средних значений. С другой стороны, при расчётах динамического равновесия в стационарном состоянии, в котором нет относительных смещений частиц, нет необходимости различать действительные движения и средние. Второе допущение находится в явном противоречии с общепринятым пониманием электродинамики, но представляется необходимым для объяснения экспериментально установленных фактов.
В расчётах на стр. 87 мы применили, кроме того, более специальное допущение, а именно допущение, что различным стационарным состояниям соответствует испускание различного числа планковских квантов энергии и что частота излучения, испускаемого при переходе системы из состояния, в котором энергия ещё не излучалась, в одно из стационарных состояний, равно половине частоты обращения электрона в последнем состоянии. Однако мы можем (см. § 3) получить соотношения (3) для стационарных состояний, применяя предположения несколько другого вида. Пока мы отложим рассмотрение специальных предположений и сначала покажем, как можно объяснить линейчатые спектры водорода для стационарных состояний с помощью упомянутых выше основных допущений и соотношений (3).
§ 2. Испускание линейчатых спектров