Вместо двух атомов водорода или гелия рассмотрим теперь один атом водорода и один гелия, ядра которых медленно сближаются подобным же образом. В этом случае в противоположность предыдущим электроны не стремятся располагаться в одном кольце. Вследствие большой разницы в радиусах орбит электронов в водороде и гелии следует ожидать, что электрон атома водорода всегда будет вращаться вне кольца гелия, и, если ядра будут приведены на очень близкое расстояние, конфигурация электронов будет совпадать с принятой в части II для лития. Внешние силы, действующие на ядра в ходе этого процесса, будут иметь направление, уменьшающее расстояние. Поэтому таким путём нельзя осуществить соединение атомов.
Рассмотренная в § 3 устойчивая конфигурация из трёх электронов и двух ядер с зарядами e и 2e не может быть образована в результате такого процесса; следовательно, электронное кольцо с самого начала было связано одним из двух ядер. Однако ни ядро водорода, ни ядро гелия не способны связать кольцо из трёх электронов, поскольку такой конфигурации будет соответствовать большая суммарная энергия, чем энергия, отвечающая связыванию ядром только двух электронов (ср. часть II, стр. 118, 119). Как указано в § 3, подобная конфигурация не может рассматриваться как возможное соединение водорода и гелия, несмотря на то, что значение W больше, чем сумма значений W для атомов водорода и гелия. Но как мы увидим в следующем параграфе, эта конфигурация может дать указания относительно возможного строения молекул определённого класса химических соединений.
§ 5. Системы, содержащие большее число электронов
Из рассуждений предыдущих параграфов мы приходим к указаниям о конфигурации электронов в системах с большим числом электронов, согласующимся с изложенными в § 2.
Представим себе, что мы даём возможность сблизиться двум атомам с большим числом электронов, подобно тому, как это делалось на стр. 140 для двух атомов водорода. В начале этого процесса влияние внутренних колец на конфигурацию весьма ограничено по сравнению с влиянием внешних колец, так что конечный результат будет зависеть в основном от числа электронов в этих кольцах. Если, например, внешнее кольцо у обоих атомов содержит только по одному электрону, можно ожидать, что эти оба электрона при сближении ядер образуют одно кольцо, как и в случае водорода. При дальнейшем сближении ядер система придёт в состояние равновесия прежде, чем расстояние между ядрами становится сравнимым с радиусом внутренних электронных колец. Если расстояние продолжает уменьшаться, то отталкивание ядер будет преобладать, стремясь препятствовать сближению систем.
Таким способом мы приходим к возможной конфигурации молекулы, состоящей из двух одноатомных веществ, например молекулы HCl, у которой электронное кольцо, представляющее химическую связь, ориентировано подобно тому, как это имеет место в молекуле водорода. Однако, поскольку, как и в случае водорода, выделяющаяся при связывании атомов энергия составляет лишь небольшую долю кинетической энергии внешних электронов, следует ожидать, что небольшие отличия в расположении электронов в кольцах, вызванные наличием в атомах внутренних колец, окажут большое влияние на теплоту образования и химическое родство веществ. Как упоминалось в § 2, детальное обсуждение этих вопросов приводит к трудоёмким численным расчётам. Однако мы можем произвести приближённое сравнение теории с экспериментом, если рассмотрим относительную частоту колебаний двух атомов в молекуле. В § 3 (стр. 139) мы вычислили эту частоту для молекулы водорода. Если только предположить, что связь атомов подобна связи атомов в молекуле водорода, то частоту другой молекулы легко вычислить, зная отношение масс данного ядра и ядра водорода. Обозначая частоту водородной молекулы через
0, а атомные веса веществ, осуществляющих упомянутую связь, через A1 и A2 соответственно, для частоты получаем=
0
A1
+A2A1
A21/2
.
Если атомы одинаковы, то молекула строго симметрична, и мы не можем ожидать поглощения излучения, соответствующего упомянутой частоте. Для газа HCl в инфракрасной области наблюдалась полоса поглощения
1 соответствующая частоте около 8,5·1013. Если в последней формуле положить A1 = 1 и A1 = 35 и использовать для 0 значение, приведённое на стр. 139, то получим = 13,7·1012. Учитывая характер использованного приближения, получающееся соответствие можно считать удовлетворительным.1
См.: Н. Кауsег. Handb. d. Spektr., 1905, 3, 366.