Читаем Избранные труды полностью

Математическая теория пропорций дала оперативную знаковую форму для выражения эмпирически выявленной зависимости между двумя свойствами объекта.

Вторую мыслительную процедуру можно назвать «объяснением» категории зависимости. После того как были зафиксированы и получили математическую форму выражения первые простейшие зависимости между свойствами объектов, начался длительный период поисков их объяснений. Мы не обсуждаем сейчас вопроса о тех причинах, которые сделали необходимым такое объяснение, и об условиях, которые сделали возможным его появление; мы принимаем это как исторический факт. Средством подобных объяснений стали «инженерные конструкции», т.е. «искусственные», как-то связанные друг с другом объекты. Это могли быть, к примеру, два шара, скрепленных стержнем, веревкой или пружиной.

Конец страницы 188

Начало страницы 189

Представление об этих «искусственных» объектах по сути дела «накладывалось» на эмпирически выявляемые зависимости между свойствами исследуемых «естественных» объектов и становилось средством понимания их: одно свойство объекта меняется в результате изменения другого, или, иначе, одно зависит от другого, потому что они как-то связаны друг с другом. Исследователь начинал «видеть» таблицу меняющихся значений свойств а и b сквозь образ связанных между собой шаров, представлял ее как результат изменений в состоянии связи





и вместе с тем как проявление самой этой связи. Если, к примеру, мы будем менять «положение» а, то соответственно изменится положение b, и это найдет себе выражение в таблице


аa1a2а3a4
bb1b2b3b4


которую можно будет затем выразить в виде той или иной аналитически представленной зависимости. «Искусственная» инженерная конструкция в виде двух связанных между собой объектов превратилась в объяснительную модель эмпирически выявляемых и фиксируемых в таблицах и функциях зависимостей.

Так складывается мыслительная конструкция, включающая две разнородные исследовательские процедуры: 1) эмпирическое выявление зависимости двух свойств изучаемого объекта и 2) объяснение этой зависимости путем отнесения ее к другому объекту, сконструированному человеком в виде двух связанных между собой элементов. Она может быть изображена схемой 14.

Эта конструкция как целое и соответствует первым формам научных понятий связи.

Математическая форма функции выражает зависимость двух свойств объекта друг от друга, но в ней нет выражения связи, и ничто не дает оснований для введения этого понятия. Другими словами, понятие связи не может появиться, пока мы пользуемся одними лишь таблицами и математическими формами выражения зависимостей. Связь появляется и может быть выделена как нечто особое и самостоятельное только с

Конец страницы 189

Начало страницы 190

введением «искусственной» конструкции связанных между собой объектов. Именно в этой конструкции впервые она получает реальное вещественное существование в виде стержня, пружины или веревки — впервые становится особым, можно сказать, вещественным объектом. Но если мы возьмем эту конструкцию саму по себе, то в ней тоже не будет никакой связи; стержень и пружина так и останутся просто стержнем и пружиной. Они становятся «связью» только благодаря тому, что сама эта конструкция выступает в роли «объяснительной модели» зависимости свойств, эмпирически выявленной в изучаемом объекте. Иначе говоря, определенные элементы «инженерных конструкций» (стержни, пружины, приводные ремни, передаточные механизмы и т.п.) выступают в качестве «связей» только в силу того, что они принимаются за «основание» тех или иных зависимостей свойств объектов.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука