Читаем Избранные труды полностью

Процессы решения учебных задач, заданных определенным текстом условий, рассматриваются нами не как замещения объективных ситуаций знаковыми системами, а как переходы от текста условий к выражениям тех знаковых систем, в которых эти задачи могут быть решены, и еще дальше — как переходы от этих знаковых систем к объективным ситуациям [ 1962 с, II, IV-V]. Нам важно подчеркнуть, что и в этом случае процесс решения задачи выступает минимум как двухплоскостное движение: одну плоскость образует текст условий, а другую — привлекаемая для решения знаковая система. (Для упрощения рассуждения мы выше просто не касались тех движений в знаковых системах, которые обязательно входят в каждый процесс решения.)

Одна и та же задача может решаться с помощью разных знаковых систем и, следовательно посредством разных деятельностей. И это относится не только к «формальным» движениям внутри знаковых систем; с изменением системы меняется и характер той деятельности, посредством которой осуществляется переход от условий задачи к знаковым выражениям: для одних систем она будет простой и компактной, для других — сложной, многократно опосредованной. Это различие в деятельности перехода определяется отношением знаковой системы к задачам, ее, если можно так сказать, «возможностям» в отношении этих задач. С этой точки зрения, как выяснилось, можно говорить о «совершенстве» и «несовершенстве» знаковых систем, об их «адекватности» и «неадекватности» задачам. Покажем это на нескольких примерах.

Арифметические задачи могут решаться с помощью нескольких различных знаковых систем, и соответствующие деятельности образуют то, что называют алгебраическим способом решения, арифметическим способом или способом предметного моделирования [ 1962 с, II-V]. Сравним два первых способа между собой.

Начнем с алгебраического. В случае простых задач переход от их условий к выражениям знаковой системы представляет собой последовательное обозначение (или отображение) элементов текста условий в знаках системы. К примеру, текст условий задачи «На дереве сидели птички |1, потом прилетели еще |2 3 |3, и стало |4 9 |5» отображается в пятиэлементном выражении «Х+3=9». С точки зрения последовательности отображения и усваиваемого в самом начале обучения «смысла»

Конец страницы 469

Начало страницы 470

знаков «+» и «—» структура алгебраического выражения «изоморфна» структуре текста (мы изобразили последнюю вертикальными линиями членения с индексами). Точнее, наверное, нужно сказать, что построение выражения в алгебраической системе предполагает очень простую («линейную») деятельность «чтения» (то есть расчленения и понимания) текста. Знаки «+» и «—» в алгебраических выражениях (благодаря тому же изоморфному отношению) изображают предметные преобразования совокупностей, описываемые в условиях задачи, или отношения частей к целому и целого к части, непосредственно следующие из текста условий. (Они не являются знаками операций, ибо никаких арифметических преобразований в этой знаковой системе и не нужно делать; в этом отношении они принципиально отличаются от арифметических знаков «+» и «—», имеющих чисто оперативный смысл.) После того, как выражение алгебраической системы получено, оно преобразуется (по правилам системы) к виду, который может быть отождествлен с каким-либо выражением арифметической системы. Например, алгебраическое выражение «Х+3=9» преобразуется к виду «9—3=Х», а это последнее замещается арифметическим выражением «9—3= ». После перехода в арифметическую систему производятся собственно арифметические операции — замещение суммы или разности одним числом в соответствии со знаком полученного выражения: в данном примере разность 9—3 замещается числом 6. Наглядно-символически весь процесс может быть изображен в трехплоскостной схеме вида:





Таким образом, и здесь, в учебных задачах, процесс решения складывается не просто из двух плоскостей, а предполагает по меньшей мере два слоя движений (на самом деле их еще больше, так как мы пока совсем не учитывали правил, по которым строятся действия внутри самих знаковых систем).

При использовании арифметического способа решения последовательно-поэлементное отображение текста условий задачи в выражение арифметической знаковой системы в большинстве случаев невозможно. Если, например, мы имеем тот же текст условий задачи «На дереве сидели птички, потом прилетели еще 3, и стало 9», то арифметическим выражением, соответствующим ему, будет «9—3= »; как видим, текст условий и

Конец страницы 470

Начало страницы 471

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука