Читаем Избранные труды полностью

4. Решение всякой познавательной задачи является определенным мыслительным процессом. Поэтому исследование процессов решения задач во многих отношениях фактически совпадает с исследованием мыслительных процессов. Суть мыслительной деятельности, с нашей точки зрения [ 1957 b, с. 42; 1958 b*, I, {с. 590-592}; 1960 с*, I, {с. 1-3}], заключается в замещении исследуемых объектов другими объектами (эталонами и «посредниками») или знаками. Поэтому процессы решения задач правильнее всего классифицировать в соответствии с тем, чем в ходе решения замещается исследуемый объект и как он замещается.

На первом этапе анализа в этом направлении оказалось целесообразным подразделить все процессы решения задач на четыре основные группы:

(1) Для характеристики первой группы можно взять мыслительные операции, которые мы осуществляем, отвечая на вопросы: «Сколько предметов на этом столе?», «Какова длина этого стола?», «Равны ли по длине эти две веревки?» и т.п. Во всех этих случаях исследуемый объект (обозначим его знаком X) и вопрос относительно него заданы таким образом, что существует одна познавательная операция — счет, измерение, наложение и т.п. (обозначим их знаком А, читай «дельта»), — решающая задачу. Эта познавательная операция направлена непосредственно на объекты (и сама представляет собой особую модификацию замещения одних объектов другими), она выделяет в объектах определенное содержание и может рассматриваться как лежащая в одной плоскости с самими объектами (см. [1958 b*, V, {с. 618-620}; 1960 с*, I, {с. 1-3}]). Результат этой познавательной операции — определенное языковое выражение или знаковая форма (цифры, слова «равно» и «не равно» и т.п.) находится уже как бы в другой плоскости по отношению к объектам и самой операции: операция как бы исчезает и в этом языковом выражении, последнее замещает операцию и выделенное посредством нее содержание. Наглядно-схематически описанный процесс решения задачи может быть изображен формулой Х^(А), где вертикальная стрелка ^ обозначает переход от объективного содержания, выявленного в плоскости объектов, к знаковой форме, лежащей уже в другой, более «высокой» плоскости.

(2) В ряде случаев объект и вопрос относительно него бывают заданы таким образом, что не существует одной познавательной операции, посредством которой можно было бы непосредственно решить задачу. Например, нельзя непосредственно сопоставить по длине два непередвигаемых объекта, расположенных в разных местах; нельзя измерить длину кривой линии прямолинейным эталоном и т.п. В этих

Конец страницы 669

Начало страницы 670

случаях задачу решают, преобразуя исходный объект X к такому виду Y или замещая объект X другим объектом Y, таким, что к Y может быть применена какая-либо операция типа , дающая знание, которое может рассматриваться как ответ на вопрос относительно X. При этом между X и Y устанавливается особое отношение замещения, которое получило название отношения эквивалентности [Ладенко, 1958 а ]. Именно таким образом, к примеру, решал задачу Галилей, когда он приступил к изучению свободного падения тел, но не мог достаточно точно измерять время такого движения и заместил его движением шарика, скатывающегося по наклонной плоскости (см. [ 1958 а * ]). Наглядно-схематически описанный процесс решения задачи может быть изображен формулой X = Y^(А), где знак = (читай «эквивалентно») обозначает замещение исследуемого объекта X другим объектом Y. Для этого процесса характерно то, что как операция замещения, так и познавательная операция А осуществляются в плоскости объектов, а языковое выражение (А), фиксирующее содержание, выделенное посредством в объекте Y, относится к объекту X (см. [Ладенко, 1958 а, с. 70]).

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука