Читаем Избранные труды полностью

Важнейшим результатом предшествующего анализа было положение о том, что применение действий сопоставления к объектам создает новое содержание; мы изобразили его символами ХΔ1Δ2... Это содержание фиксируется, выражается в знаковой форме (А) (В) и способах оперирования с нею — λ1λ2. Применяя затем другие действия сопоставления к знакам (А) (В), мы получаем новое содержание, которое выражаем в знаках (D) (E) (F) и очень часто относим непосредственно к объекту X. Например, мы измеряем последовательно соответствующие друг другу значения давления и объема определенной массы газа (первая плоскость предмета), получаем ряды значения р1, р2, р3 ..., V1, V2, V3 ... (образующих вторую плоскость предмета), затем сопоставляем их как p1V1<->p2V2<->p3V3<->... и находим математическую форму их зависимости pV = const (которая должна быть помещена уже на третьей плоскости предмета). Содержание этой формы мы рассматриваем как «закон», которому подчиняется газ, и, следовательно, относим его непосредственно к нашему объекту.

Но нередко такое непосредственное отнесение не может быть выполнено, так как содержание, выявляемое опосредованно из деятельности со знаками, не соответствует эмпирически наблюдаемым или выявляемым свойствам объекта. Тогда для него строят специальное знаковое изображение, которое «встает» как бы между знаковой формой знания и эмпирически данными объектами.

 Конец страницы 168 

 Начало страницы 169 

Если обратиться к приведенной выше схеме «предмета», то ситуацию, в которой вновь полученное знание не удается отнести к объекту, можно будет изобразить в схеме 6.

Здесь в очерченном пунктиром прямоугольнике изображен «разрыв», возникший из-за того, что мы не можем отнести результаты, полученные при оперировании в четвертой плоскости знания, непосредственно на объект X. Для ликвидации этого разрыва строится особая знаковая конструкция (на схеме она изображена маленьким квадратом с буквой О в середине), которая должна определенным образом представить предмет «как таковой». Исходя из этой специфической функции, о подобных изображениях можно говорить как об онтологических представлениях содержаний знания. Это точно выражает специфическую познавательную роль таких знаковых конструкций: они должны так представить объект, чтобы обеспечить связь его с вновь полученными знаниями. Именно таким путем появляются так называемые «идеальные предметы» — тяжелая точка, идеальный рычаг, абсолютно упругое тело, математический маятник и др. [Хайкин, 1947].

Рассмотрим в качестве примера «математический маятник». Уравнение его колебаний содержит знаки М — массы маятника и l его длины. Представим себе, что перед нами реальные маятниковые часы с массивным диском и длинным стержнем. Можно ли применить это математическое уравнение колебаний маятника для описания реального движения маятника часов? Оказывается, что если мы будем измерять его действительные параметры — длину стержня или массу диска, то получим неправильные результаты. Математическое уравнение колебаний маятника может быть отнесено непосредственно лишь к особому идеальному предмету — «математическому маятнику», а он, в свою очередь, может быть представлен только в знаках. Чтобы применить математическое уравнение колебаний маятника к реальному маятнику, последний нужно еще свести к математическому маятнику, а это значит, с помощью особых специально задаваемых процедур измерить и рассчитать так называемые «приведенную длину» и «приведенную массу» реального маятника (см. схему 7).

 Конец страницы 169 

 Начало страницы 170 

Аналогичная картина с онтологическими представлениями обнаруживается и у всех других научных знаний.

Онтологическое представление дает вторую форму существования предмету знания: оно как бы «сплющивает» его многоплоскостную структуру в одном изображении.

Только теперь, введя эти общеметодологические понятия, мы можем вернуться к проблемам системно-структурного исследования и спросить:


что такое система?


Перейти на страницу:

Похожие книги

Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука