Эта схема накладывается на реальные исследуемые ситуации: если «поведение» двух каких-либо объектов, факторов или явлений в ней соответствовало изображенному на схеме, то мы могли утверждать, что между ними есть причинная связь. В этой схеме индуктивного вывода А.А.Зиновьев нашел то, что ему было нужно: она удовлетворяла всем поставленным выше требованиям — была особым изображением содержания знания о связи, отличным от формы самого знания, и вместе с тем, в противоположность всем другим видам изображений, отчетливо показывала сам способ построения знания.
Чтобы избавиться от некоторых недостатков традиционных схем. Зиновьев ввел ряд новых, формально точно определенных понятий и их специальных знаковых изображений. Основным стало знаковое изобра-
Конец страницы 184
Начало страницы 185
жение «объекта сопоставления», куда вошли как знаки самих реальных «предметов» — а, b, с..., так и знаки выделенных в них свойств или признаков — Q, R, Р... В целом «объект» изображался знаковыми группами вида (Qa), (Rb), (Pb) и т.д. Отсутствие «объекта» рассматривалось тоже как определенный объект и изображалось знаковой группой вида (—Qa). Фиксация «объекта» в соответствующем знании выражалась в знаковой группе «Qa» или «—Qa».
После того как были выведены эти знаковые изображения и соответствующие им понятия, приведенную выше схему индуктивного сопоставления стало возможным изобразить в виде таблицы:
I | (Qa) | (Rb) |
II | (-Qa) | (-Rb) |
Первая строка ее должна была изображать одну ситуацию сопоставления «объектов» Qa и
На основе этих представлений и знаковых изображений А.А.Зиновьев построил математико-логическое исчисление связей, определил условия логической истинности различных сложных высказываний о связях, построенных по определенным правилам из более простых высказываний. И эта работа, повторим снова, является наиболее принципиальной и фундаментальной из всех, выполненных к настоящему времени по проблемам логического определения связи.
Но, несмотря на все свои достоинства, она имеет один существенный недостаток: не может охватить всех существующих в настоящее время и широко употребляемых в науке понятий связи; и даже, наверное, можно сказать еще резче: введенное в ней понятие связи вообще не соответствует большинству из этих употреблений, и в частности всем знаниям о связях объектов и элементов в целом, всем кинематическим и механическим представлениям связи и т.п.
Конец страницы 185
Начало страницы 186
На наш взгляд, причина этого заключается в основаниях метода анализа — они оказались слишком узкими и, может быть, даже просто неправильными. В обоснование этого утверждения мы хотим рассмотреть
основные противоречия существующего понятия связи
Среди разнообразных знаний о связях, встречающихся в современной научной литературе, можно выделить два полярных типа: один фиксирует зависимости или связи между свойствами, признаками объектов, другой — связи между самими объектами, рассматриваемыми в качестве элементов целого. Характерным примером знания первого типа является аналитическая форма выражения какого-либо «закона», скажем закона Бойля—Мариотта о зависимости между объемом и давлением газа: pV = const. Примером знания второго типа может служить описание структурной формулы какого-либо химического соединения, скажем, в простейшем случае вида: Са(ОН)2
. И если мы возьмем знания о связях второго типа, то оказывается, что как способы их построения, так и способы формального оперирования с ними совершенно не соответствуют тому, что А.А.Зиновьев описал в понятиях «объектов сопоставления», ситуаций и наборов. Его понятие построено таким образом, что не может охватить и выразить связи между элементами реальной структуры объектов, элементами, получаемыми путем