Читаем Избранные труды полностью

формирования античной математики, ньютоновской механики, молекулярно-кинетической теории вещества и максвелловской электродинамики дает нам ряд совершенно единообразных и прозрачных образцов [ 1967 b;Галилей, 1934, т. 1; Максвелл, 1938; Гуковский, 1947; Больцман, 1956; Розин, 1964 а; Москаева, Розин, 1966; Лакатос, 1967; Степин, Томильчик, 1970; Алексеев И., 1974 а, b]. В силу этого только вместе с этой онтологией и, можно даже сказать, в неразрывном единстве с ней систематизированные формальные знания образуют систему теории. Однако в традиционной эпистемологии с начала XIX столетия и до наших дней система теории, как правило, отождествляется с множеством так или иначе систематизированных формальных знаний. Такой подход имеет два основания. Одно из них — методологические трудности описания системы теории как составленной из двух совершенно разнородных системных образований — системы формальных знаний и системы идеальных объектов, представленных в обобщенной онтологии. Другое основание — реальная обособленность и автономность систем формальных знаний в современном мышлении и в организации научных исследований и разработок. Благодаря интенсивному развитию в XIX в. философии математики и математической логики над системами формальных знаний (систематизированных первоначально путем систематизации идеальных объектов и построения обобщенных онтологических картин) были построены новые знания методического и методологического типа, отображающие структуру исходных формальных знаний, отношения между разными формальными знаниями и процедуры преобразования одних знаний в другие [Brower, 1928; Carnap, 1929, 1934; Morgan, 1847; Boole, 1847, 1854; Schroder, 1877; Frege, 1879; Peano, 1889]. Благодаря этому системы формальных знаний были как бы подвешены к метазнаниям, фиксирующим правила конструктивного развертывания и преобразования одних формальных знаний в другие, а связь их с онтологией была ослаблена или совсем разорвана [ 1960 с *; Гейтинг, 1936; Гильберт, 1948]. Многие системы формальных знаний превратились в формализованные системы [Гейтинг, 1936; Гильберт, 1948].

В результате всех этих процессов систематизации и формализации многие из формальных знаний, входящих в систему теории, неизбежно теряют непосредственную операциональную связь с единичными объектами практики (см., в частности, обсуждение этого вопроса в работе [Гильберт, 1948]). Однако сама теория оправданна и может существовать в системе культуры лишь до тех пор, пока в ее составе остается достаточно большое число формальных знаний, непосредственно выно-

 Конец страницы 661 

 Начало страницы 662 

симых на объекты практики, и, по сути дела, сама теория всегда существует и развертывается лишь ради них.

Но вернемся несколько назад. Итак, нетрудно заметить, что свойство структуры формальных знаний непосредственно никак не связано с требованием изображать охватываемые в формальных знаниях объекты. Наоборот, можно показать, что если бы мы наложили это требование на формальные знания и при создании их стремились к тому, чтобы они в своем строении всегда изображали бы реальное строение объектов, их подлинную природную структуру, то во многих случаях мы не получили бы формальных связок и не смогли бы использовать формальные знания как способ обобщенной фиксации нашего опыта и средство образования реальных знаний о единичных объектах11.

Совершенно иначе обстоит дело со структурными моделями объектов. Они не содержат формальных связок следования, и поэтому их нельзя использовать для того, чтобы, выявив эмпирически какое-либо свойство в объекте, формально приписывать ему другие свойства, «необходимо» связанные с первым. В системе научного предмета структурные модели предназначены для другого — они должны изображать объект как таковой, в целом, безотносительно к тем или иным частным возможностям его познания и практического использования. Если структурные модели и соотносятся с объектами, положенными вне их, — практическими или идеальными, представленными в онтологии, — то при этом обязательно должны накладываться на них в целом, во всей совокупности зафиксированного в них содержания, и между различными элементами или частями этого содержания не может быть того различия между эмпирически выявляемым и гипотетически приписываемым, кото-

___________________________________

Перейти на страницу:

Похожие книги

Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука