Читаем Избранные труды полностью

(3) В качестве примера процессов третьей группы можно взять определение вида вещества в соответствии с положением «Если вещество окрашивает лакмус в красный цвет, то это вещество есть кислота». Необходимым условием процессов этого вида являются предварительная выработка и использование в ходе самого решения задачи сложной знаковой формы (иначе — формального знания), которая в простейших случаях представляет собой отдельное выражение вида «Все (В) суть (А)» или систему таких выражений. В специальной серии сообщений [ 1958 b*] мы разобрали условия и закономерности формирования знаковых форм такого вида, относящихся к категории атрибутивного знания, и дали общую схему решений, основанных на использовании этих форм (см. [ 1958 b*, V]). Наглядно-символически эти процессы решения задач можно изобразить в формуле XΔ↑(B)λ(A), где (В) есть знаковое выражение, фиксирующее результат применения операции Δ к объекту X, а λ изображает «формальные преобразования» (осуществляемые в соответствии со связями и правилами формальной знаковой системы), приводящие выражения вида (В), (С), (О)... к виду (А), которое может рассматриваться как ответ на исходный вопрос относительно объекта X. В простейших случаях, когда знаковые системы имеют вид «Все (В) суть (А)», эти преобразования представляют собой просто переход по связи от (В) к (А) и приписывание объекту X свойства, зафиксированного в выражении (А), — процесс решения задачи может быть изображен в этом случае формулой ХΔ↑(B)→(A), — но в более сложных случаях эти преобразования включают в себя собственно формальные действия — «присоединение», «исключение» и т.п. (см. [1958 b*, V; {с. 617-618}]).

 Конец страницы 670 

 Начало страницы 671 

Другими примерами процессов этой же группы будут: сложение нескольких чисел, дающее ответ на вопрос о количестве объектов в совокупности, части которой находятся в разных местах; вычисление длины окружности на основании формулы l = 2πr, после того как измерена длина радиуса этой окружности; использование уравнения химической реакции для ответа на вопрос, какие вещества получатся, если мы приведем во взаимодействие другие определенные вещества, и т.п. Генетически все эти процессы значительно сложнее, чем процессы, основывающиеся на знаковой форме атрибутивного вида, и, в частности, возникают как сокращения комбинаций из процессов решения вида (2) и (3), но с функционарной точки зрения, т.е. с точки зрения способа непосредственного осуществления, они ничем принципиально не отличаются от процессов, разобранных выше. Для всех процессов этой группы характерно, что большая часть составляющей их деятельности лежит в плоскости знаковой формы (есть, следовательно, деятельность не с объектами, а со знаковыми выражениями) и имеет чисто формальный характер.

(4) К четвертой группе мы относим все те случаи, когда объект и вопрос относительно него заданы таким образом, что для решения задачи нужно осуществить сложную комбинацию замещений исходного объекта различными знаковыми формами (часто также и одних знаковых форм другими) и преобразований (формальных и содержательных) этих знаковых форм, т.е. процессы, представляющие собой комбинации процессов вида (2) и (3). Характерными примерами процессов такого вида являются решения геометрических задач. Важно специально отметить, что на определенных этапах решения этих задач знаковые формы, замещающие исходный объект, рассматриваются как объекты особого рода и к ним применяется особая деятельность, напоминающая содержательные преобразования собственно объектов, рассмотренные под п. (2). Специфику подобных процессов решения задач составляют каждый раз порядок и способы комбинирования элементарных процессов вида (2) и (3). Соответственно мы получаем для изображения этих процессов решения задач различные формулы. Например, процесс решения геометрической задачи, при котором исходная фигура включается в более сложную фигуру и получает в связи с этим новые определения, позволяющие в соответствии с уже имеющейся сложной знаковой формой приписать этой фигуре (а вместе с тем и объекту X) новое свойство, может быть изображен в формуле:





где (β) есть геометрическая фигура, замещающая на основе операции Δ исходный объект, (α) — эта же фигура, получившая новое определение, = — знак эквивалентного замещения, Δ' — операция, выделяющая в

 Конец страницы 671 

 Начало страницы 672 

(α) свойство, которое фиксируется в знаке (В), а (А) — знаковое выражение свойства, которое в соответствии с формальным знанием (В) —> (А) приписывается (α), затем (β) и, наконец, самому X. Важно также отметить, что часто повторяющиеся комбинации элементарных процессов закрепляются в виде определенных строго фиксированных приемов; в качестве примера можно указать на прием среднего пропорционального в геометрии.

Перейти на страницу:

Похожие книги

Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука